Optimization of magnetic field in ELITPC detector for ELI-NP with GEANT4 simulation toolkit

Jerzy Mańczak 11.10.2017 School for Astroparticle Physics 2017 Obertrubach-Bärnfels

1

ELI – NP facility

Extreme Light Infrastructure – Nuclear Physics

2 Lasers with 10 PW power

- Experiments with very brilliant gamma beam:
- Photodesintegration
- Photon-nucleon collisions
- Nuclear resonance fluorescence
- Nuclear astrophysics

http://www.eli-np.ro/

Romania, Măgurele First measurements planned for late 2018

The gamma beam

- Photon energy 0,2-19.5 MeV
- Macropulse frequency 100 Hz
- Energy bandwidth $\Delta E/E \sim 0.5$ %
- >99% linear polarization

Compton backscattering of photons on electrons with energy up to 700 MeV

[1] Technical Design Report, EuroGammaS proposal for the ELI-NP Gamma beam System[2] D.Filipescu et al., Eur. Phys. J. A51 (2015) 185

ELITPC Detector

- Under construction at Faculty of Physics, University of Warsaw
- Gaseous active-target detector
 - Low pressure ~100 mbar
 - 3 coordinate planar strip readout
 - Various experiments with the Gamma Beam

[3] O.Tesileanu et al., *Charged Particle Detection at ELI-NP*, Romanian Rep. in Phys. 68, Supplement (2016) S699 4

The Flagship Reaction

Cross section measurement for the inverse reaction (helium burning) via detailed balance principle – strong and e.m. interactions invariant with respect to time reversal

Astrophysical motivation: Measure astrophysical S-factor in the Gamow peak region for better understanding of the C/O ratio in the stellar evolution

[4] S.Gales et al., *New frontiers in nuclear physics with high-power lasers and brilliant monochromatic gamma beams*, 2016 Phys. Scr. 91 093004, 8 August 2016

Detector Geometry

Simplified detector geometry

Track bending scheme

$$r = \frac{p_e}{qB} = \frac{\sqrt{E^2 - m^2}}{qB}$$

For example values A=10 cm, x=20cm and p_e =20 MeV Liminal radius r=74.41 cm To reach that radius B=89.6 mT needed

Simulation model

Interactions of photons included:

- Photoelectric effect
- Compton scattering
- Pair production

Path step calculation cuts for different regions:

- Inlet window 2.5 μ m
- Walls of the steel inlet pipe 0.2 mm
- Detector chamber 1 cm
- Detector chamber steel walls 0.2 mm

Interactions of electrons and positrons:

- Bremstrahlung
- Ionization
- Coulomb scattering with multiple scattering included
- Synchrotron radiation

*Based on simulation code developed by Piotr Podlaski

Simulation procedure

- For each simulation run 10⁷ photons were shot
- 3 beam energies: 5, 10 and 20 MeV, precise E values, monochromatic and point-like beam
- 2 gas mixtures: pure CO_2 (100 mbar) and CO_2 -He (50:50, 200 mbar)
- Magnetic field is (width 10 cm) moving along the pipe with 5 cm steps

Example of interactions

Example simulation result

Example simulation result

Results for CO₂

Results for CO₂-He

Summary

- Magnet can significantly reduce background signal
- The tool for further optimization was developed
- Current status: prototype detector is being tested in Romania
- First beam energy ~8 MeV

Thank you for your attention !

References

[1] *Technical Design Report*, EuroGammaS proposal for the ELI-NP Gamma beam System [access on-line: https://arxiv.org/ftp/arxiv/papers/1407/1407.3669.pdf

[2] D.Filipescu et al., Eur. Phys. J. A51 (2015) 185 [access on-line: http://link.springer.com/article/10.1140/epja/i2015-15185-9

[3] O.Tesileanu et al., *Charged Particle Detection at ELI-NP*, Romanian Rep. in Phys. 68, Supplement (2016) S699 [full text: http://www.rrp.infim.ro/IP/S13.pdf]

[4] S.Gales et al., *New frontiers in nuclear physics with high-power lasers and brilliant monochromatic gamma beams*, 2016 Phys. Scr. 91 093004, 8 August 201 [full text: http://www.eli-np.ro/scientific-papers/ps_91_9_093004.pdf]

Reaction signal with expected background

19

Backup – GBS parameters

Parameter [units]	Value
Photon energy [MeV]	0.2 – 19.5
Spectral density [ph/s/eV]	> 104
Bandwidth	< 0.5 %
# photons / shot FWHM bdw.	1.0 – 4.0 [.] 10 ⁵
# photons/sec FWHM bdw.	2.0 – 8.0·10 ⁸
Source rms size [µm]	10 – 30
Source rms divergence [µrad]	25 – 250
Peak brill. [N _{ph} /sec·mm²mrad²·0.1%]	10 ²² – 10 ²⁴
Radiation pulse length [ps]	0.7 – 1.5
Linear polarization	> 99 %
Macro repetition rate [Hz]	100
# of pulses per macropulse	>31
Pulse-to-pulse separation [ns]	16

Taken from presentation by Catalin Matei "Electronics & Integration of Gamma Beam Monitoring Instruments at ELI-NP", ELI-NP Electronics Workshop, 09/2017