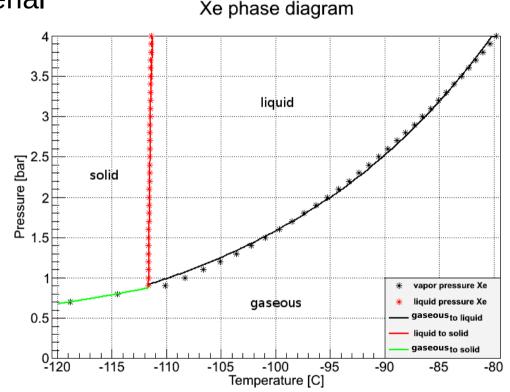


The Dual-Phase Liquid Xenon Time Projection Chamber (TPC) of Münster

Calibration and Safety Aspects


Schule für Astroteilchenphysik 2017

Kevin Gauda – 10.10.2017

wissen leben WWU Münster

Properties of Xenon as Detector Material

- Noble gas characterized by:
 - High atomic number **Z** = **54**
 - Atomic weight $\bar{\mathbf{A}} = \mathbf{131.30} \mathbf{u}$
 - Density (liquid xenon) $\rho_{LXe} = 3 \text{ g/cm}^3$
 - Boiling point -108.1 °C (1 bar)
 - Freezing point -111.8 °C (1 bar)
 - \rightarrow Operation at -100 °C, 2 bar
- Transparent to own scintillation light
- Self-shielding (absorption of higher energy photons)
- Bad news: Xenon is expensive!

Signal Generation with Xenon

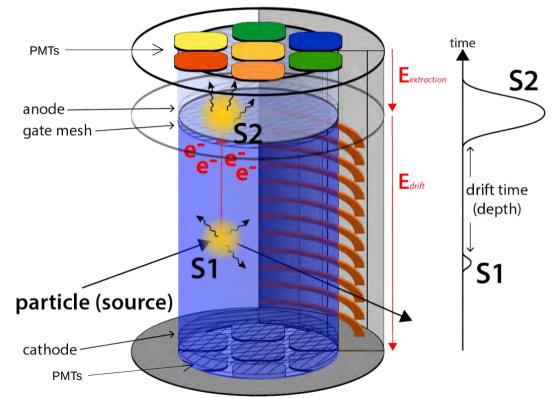
- Processes after interaction:
 - Excitation
 - Ionization
 - Generation of ions and free electrons
 - Heat
- Emission of 178 nm scintillation light

Münster Liquid Xenon Dual-Phase TPC

Excitation process: $Xe^* + Xe + Xe \rightarrow Xe_2^* + Xe$ $Xe_2^* \rightarrow 2Xe + hv$

Ionization process: $Xe^+ + Xe \rightarrow Xe_2^+$ $Xe_2^+ + e^- \rightarrow Xe^{**} + Xe$ $Xe^{**} \rightarrow Xe^* + heat$ $Xe^* + Xe + Xe \rightarrow Xe_2^* + Xe$ $Xe_2^* \rightarrow 2Xe + hv$

• Two electric fields between cathode, gate and anode

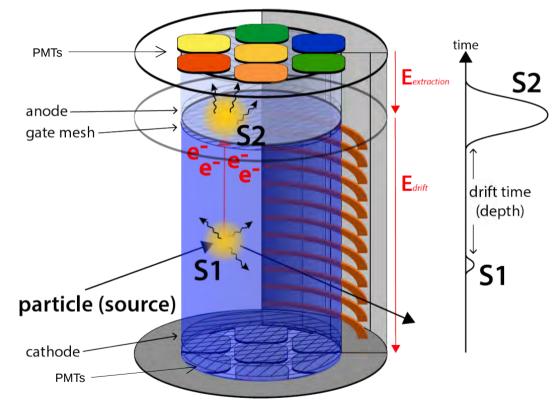

NESTEÄLISCHE

MÜNSTER

WILHELMS-UNIVERSITÄT

- Top and bottom PMTs detect light
- Signal generation:
 - \rightarrow Incoming particle
 - \rightarrow S1 signal:
 - Xe-dimers are created via **excitation and ionization** → **light emission**
 - \rightarrow S2 signal:

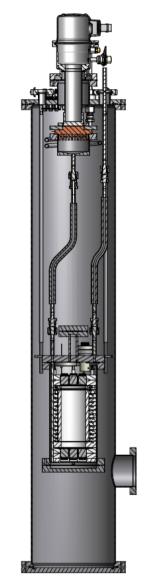
Electrons are drifted to gate via E_{drift} and extracted via $E_{extraction} \rightarrow$ light emission via electrolumniscence



L. Althüser, GEANT4 simulations of the Muenster dual phase xenon TPC, Bachelor thesis, 2015

Working principle of Dual-Phase Liquid Xenon TPCs

- S1: mainly seen by bottom PMTs
- S2: mainly seen by top PMTs
- Energy reconstruction by using anti-correlated S1 and S2
 - Coincidence determination & correct energy estimation only with low concentration of e.g. O₂, H₂O, ...
- 3d position reconstruction
 - z: S1-S2 time difference & electron drift velocity → drift length
 - xy: hit pattern of PMTs



L. Althüser, GEANT4 simulations of the Muenster dual phase xenon TPC, Bachelor thesis, 2015

5

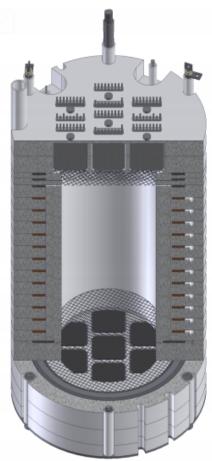
Design of the Münster TPC

- Designed originally for monitoring purity of XENON1T
- Xenon filling by guiding xenon gas slowly into cryostat
 - Gaseous xenon cooled to -100°C
 by coldhead → liquefaction
- Vacuum vessel for thermal insulation (high vacuum)
- Gas circulation through hot zirconium getter by pump → reduce electronegative impurities

วุuid Xenon Dual-Phase TPC

6

J. Schulz, Design of a 2-Phase Xenon Time Projection Chamber for Electron Drift Length Measurement, Diploma thesis, 2011


Kevin Gauda

Design of the Münster TPC – Basic Design

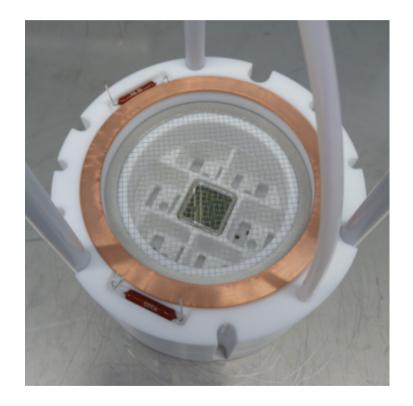
- Diameter 8 cm, height 17 cm (i.e. drift length)
- Maximum mass of 2.6 kg xenon
- Cylindrical polytetraflourethylene (PTFE) container
 - Highly reflective
 - Fitting high purity demands
 - Low electric field distortion by PTFE ($\varepsilon_{r, LXe} = 1.88; \epsilon_{r, PTFE} = 2.1$)
- 14 Hamamatsu R8520-06-Al 1 PMTs (same as XENON100)

Münster Liquid Xenon Dual-Phase TPC

J. Schulz, Design of a 2-Phase Xenon Time Projection Chamber for Electron Drift Length Measurement, Diploma thesis, 2011

Design of the Münster TPC – Basic Design

- Diameter 8 cm, height 17 cm (i.e. drift length)
- Maximum mass of 2.6 kg xenon
- Cylindrical polytetraflourethylene (PTFE) container
 - Highly reflective
 - Fitting high purity demands
 - Low electric field distortion by PTFE ($\varepsilon_{r, LXe} = 1.88; \epsilon_{r, PTFE} = 2.1$)
- 14 Hamamatsu R8520-06-Al 1 PMTs (same as XENON100)


8

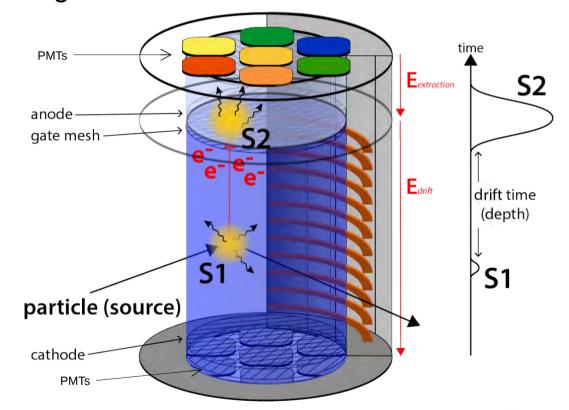
J. Schulz, Design of a 2-Phase Xenon Time Projection Chamber for Electron Drift Length Measurement, Diploma thesis, 2011

Design of the Münster TPC – Electric Field Design

- High Voltage:
 - Cathode: -8.5 kV (i.e. E_{drift} = 0.5 kV/cm)
 - Anode: 2.5 kV (i.e. $E_{extraction} = 5$ kV/cm)
 - Annular electrodes for improved field homogenity
- Electric fields in xenon:
 - Electron extraction yield dependent on field strength (Münster TPC: ~70 %)
 - Electron drift velocity dependent on field strength (Münster TPC: < 2 mm/µs)
 - → Increased electric field feasible!

9

J. Schulz, Design of a 2-Phase Xenon Time Projection Chamber for Electron Drift Length Measurement, Diploma thesis, 2011


- Importance of **liquid level**:
 - Electron extraction efficiency dependent on field strength

NESTFÄLISCHE

MÜNSTER

WILHELMS-UNIVERSITÄT

- Field strength highest between gate and anode
 - → Highest signal rate there!
 - → Current project!
- Level meters
 - Cylindrical capacitors from bottom to top of TPC
 - Change of filling height
 → change of capacity: ΔC ∝ Δε_r

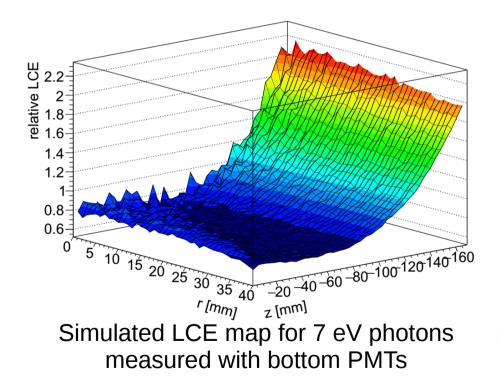
D. Schulte, Capacitance-Based Levelmeter Read-Out for the Münster Dual Phase Xenon Time Projection Chamber, Bachelor thesis, 2016

Design of the Münster TPC – Critical Devices

- Gas system
 - Pressure in TPC limited by **rupture disc**
 - Prevent blocking of pump
- Slow Control
 - Monitoring temperature, pressure, high voltage, gas flow cia LabView cRIO system
 - Sends out mail and SMS alarms, if certain parameters out of range
 - Shifters: Manual protocolling of certain parameters and device states
- Emergency prevention
 - Uninterruptible power supply

\square					
	Shifter	Date	Stability	Liq N2	 Sign
Ϋ́	Michael	2017- 10-02	ok	ok	mm
	Alex	2017- 10-09	P2 oscill.	ok	af
Ŷ Â	Kevin	2017- 10-16	ok	Refill!	kg
ТРС					

NOT OK?


GETTER

ALARM!

Light Collection Efficiency (LCE), Electron Lifetime (EL), Light Yield (LY)

- LCE: S1 generation not homogenous, as shown by LCE map
 - Deeper generated S1 are bigger
- **EL:** Electrons catched by impurities (e.g. O₂)
 - S2 from deeper S1 events are smaller
- LY: Assigned energy per *pe*
- Use Kr-83m source for calibration
 - Energy of 32.2 keV and 9.4 keV
 (with 156 ns delay)
 → see talk of M. Wigard (4e)

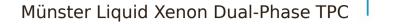
L. Althüser, GEANT4 simulations of the Muenster dual phase xenon TPC, Bachelor thesis, 2015

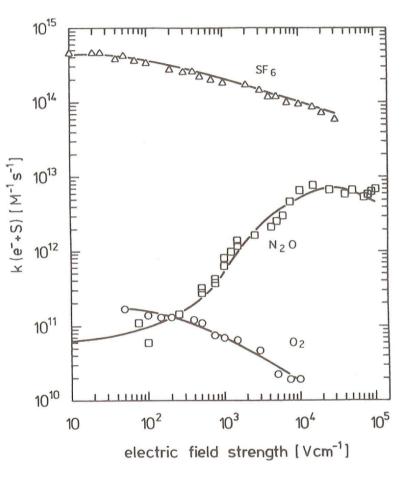
Outlook

- Safety enhancement
- Liquid level adjustment
- Energy calibration with Kr-83m
 - Light collection efficiency \rightarrow S1 correction
 - Electron lifetime
 - \rightarrow S2 correction
 - Light yield
 - \rightarrow Corrected energy estimation
 - Use other sources (e.g. Cs-137 with 662 keV photons)

Thank you for your attention!

Kevin Gauda

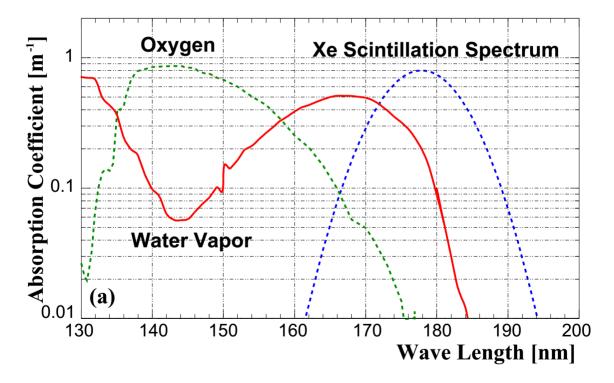



Backup

Kevin Gauda

Purity Aspects – Electron lifetime

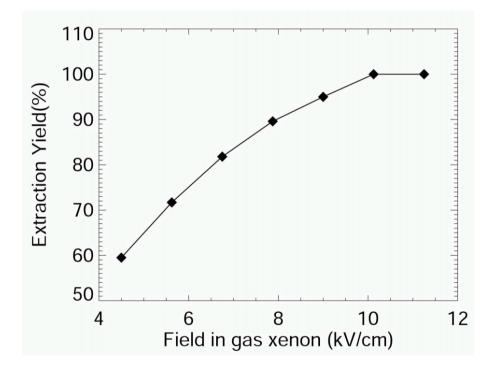
- Electron lifetime τ : mean time before attachement
- Electron attachement rate constant k dependent on field strength and impurity
- Exponential electron reduction by impurities: electronegative molecules, e.g. N₂O, O₂, ...
 - Purification by hot metal getter
 - XENON1T: $\tau \approx 450 \ \mu s$ (mean)
 - Münster: electron lifetime not yet measured



E. Aprile, T. Doke, *Liquid Xenon Detectors for Particle Physics and Astrophysics*, 10.1103/RevModPhys.82.2053, 2009

16

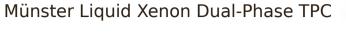
Purity Aspects – Photon absorption by impurities

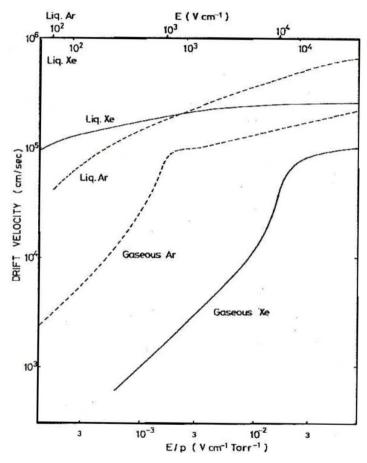

E. Aprile, T. Doke, *Liquid Xenon Detectors for Particle Physics and Astrophysics*, 10.1103/RevModPhys.82.2053, 2009

Kevin Gauda

NESTEÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

Electric Fields in Xenon

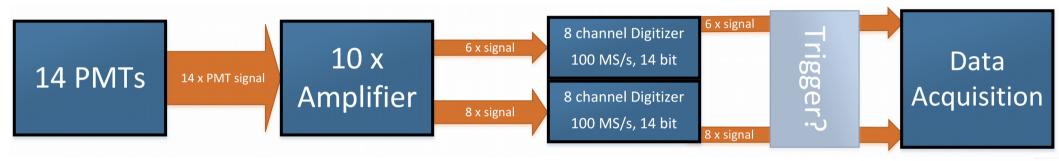

- Extraction yield of generated electrons ٠ from liquid to gaseous xenon dependent on field strength
 - 100 % at $E_{extraction} > 10$ kV/cm
- Electron drift velocity dependent on ٠ field strength
 - Saturation at 3-10 kV/cm _



E. Aprile, T. Doke, Liquid Xenon Detectors for Particle Physics and Astrophysics, 10.1103/RevModPhys.82.2053, 2009

Electric Fields in Xenon

- Extraction yield of generated electrons from liquid to gaseous xenon dependent on field strength
 - 100 % at $E_{extraction}$ > 10 kV/cm
- Electron drift velocity dependent on field strength
 - Saturation at 3-10 kV/cm

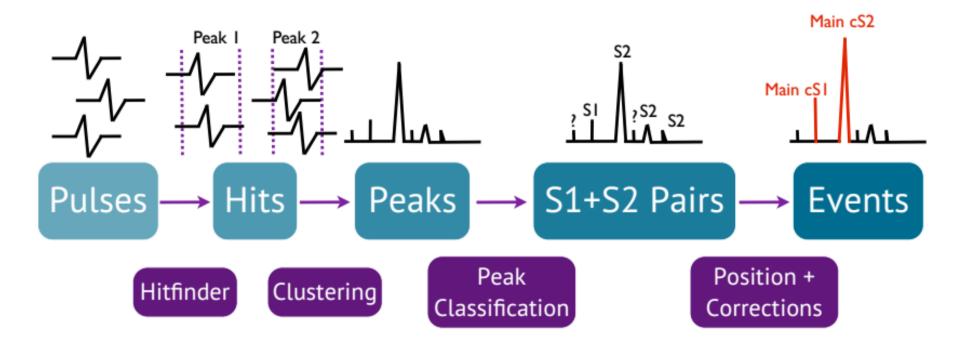


E. Aprile, T. Doke, *Liquid Xenon Detectors for Particle Physics and Astrophysics*, 10.1103/RevModPhys.82.2053, 2009

Kevin Gauda

Signal Chain

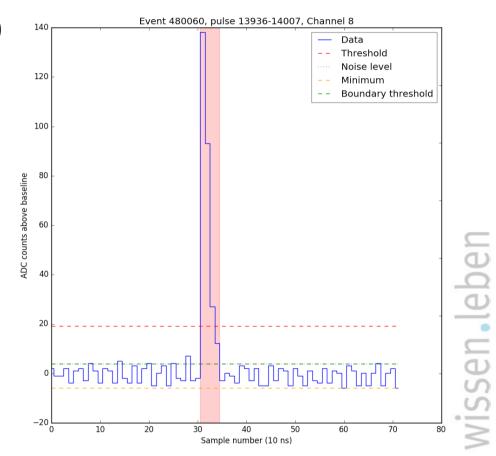
Trigger on S2-signals:


- Amplitude Threshold = 150 ADC (1.3 pe)
- Time threshold = 30 samples (300 ns)
- Recording of 2k samples after and 14k samples before trigger

Time:

- 1 sample \approx 10 ns
- 1 Event contains 16k samples, i.e. 160 µs Drift length: 17 cm; e- drift velocity: 2 mm/µs
- \rightarrow Maximum drift time \approx 85 µs

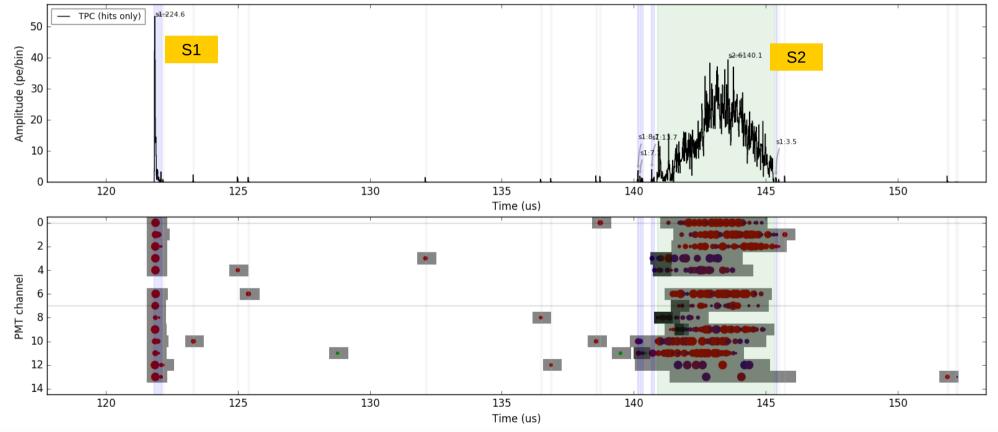
Processor for Analyzing XENON (PAX)


C. Wittweg, XENON100 Dark Matter Search with the PAX Raw Data Processor for XENON1T, Master thesis, 2016

Kevin Gauda

Münster Liquid Xenon Dual-Phase TPC

Processor for Analyzing XENON (PAX)


- Pulse area needs 5 sigma over baseline to be declared as hit
- Coincident *hits* are summed to *peaks*
- If *lone hits* occur, channels are marked as suspicious (reduction of noise)
- Peaks are classified as
 - S1 (e.g. area < 50 pe, width < 100 ns)
 - S2 (e.g. area > 50 pe, width > 75 ns)
- S1 and S2 signals then get paired to *interactions* if S1 arrives before S2

22

Processor for Analyzing XENON (PAX)

WWU Münster

Kevin Gauda