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Properties of Xenon as Detector Material

● Noble gas characterized by:

– High atomic number Z = 54

– Atomic weight Ā = 131.30 u

– Density (liquid xenon) ρLXe = 3 g/cm³

– Boiling point -108.1 °C (1 bar)

– Freezing point -111.8 °C (1 bar)

→ Operation at -100 °C, 2 bar

● Transparent to own scintillation light

● Self-shielding
(absorption of higher energy photons)

● Bad news: Xenon is expensive!

gaseous

gaseous
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Signal Generation with Xenon

● Processes after interaction:

– Excitation

– Ionization

● Generation of ions
and free electrons

– Heat

● Emission of 178 nm scintillation light
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● Two electric fields between cathode,
gate and anode

● Top and bottom PMTs detect light

● Signal generation:

→ Incoming particle

→ S1 signal:
Xe-dimers are created via excitation 
and ionization → light emission

→ S2 signal:
Electrons are drifted to gate via Edrift and
extracted via Eextraction → light emission 
via electrolumniscence

Working principle of Dual-Phase Liquid Xenon TPCs

L. Althüser, GEANT4 simulations of the Muenster dual phase xenon TPC, Bachelor thesis, 2015

PMTs

PMTs
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● S1: mainly seen by bottom PMTs

● S2: mainly seen by top PMTs

● Energy reconstruction by using 
anti-correlated S1 and S2

– Coincidence determination &
correct energy estimation only with 
low concentration of e.g. O2, H2O, ...

● 3d position reconstruction

– z: S1-S2 time difference & electron 
drift velocity → drift length

– xy: hit pattern of PMTs

Working principle of Dual-Phase Liquid Xenon TPCs

L. Althüser, GEANT4 simulations of the Muenster dual phase xenon TPC, Bachelor thesis, 2015

PMTs

PMTs
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Design of the Münster TPC

● Designed originally for monitoring 
purity of XENON1T

● Xenon filling by guiding xenon gas 
slowly into cryostat

– Gaseous xenon cooled to -100°C 
by coldhead → liquefaction

● Vacuum vessel for thermal 
insulation (high vacuum)

● Gas circulation through hot 
zirconium getter by pump → reduce 
electronegative impurities

J. Schulz, Design of a 2-Phase Xenon Time Projection 
Chamber for Electron Drift Length Measurement,
Diploma thesis, 2011
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Design of the Münster TPC – Basic Design

J. Schulz, Design of a 2-Phase Xenon Time Projection Chamber for Electron Drift Length Measurement,
Diploma thesis, 2011

● Diameter 8 cm, 
height 17 cm (i.e. drift length)

● Maximum mass of 2.6 kg xenon

● Cylindrical polytetraflourethylene 
(PTFE) container

– Highly reflective

– Fitting high purity demands

– Low electric field distortion by PTFE
(ɛr, LXe = 1.88; ɛr, PTFE = 2.1)

● 14 Hamamatsu R8520-06-Al 1 PMTs
(same as XENON100)
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Design of the Münster TPC – Electric Field Design

● High Voltage:

– Cathode: -8.5 kV (i.e. Edrift = 0.5 kV/cm)

– Anode: 2.5 kV (i.e. Eextraction = 5 kV/cm)

– Annular electrodes for improved 
field homogenity

● Electric fields in xenon:

– Electron extraction yield dependent 
on field strength (Münster TPC: ~70 %)

– Electron drift velocity dependent on 
field strength (Münster TPC: < 2 mm/µs)

→ Increased electric field feasible! 

J. Schulz, Design of a 2-Phase Xenon Time Projection Chamber for Electron Drift Length Measurement,
Diploma thesis, 2011
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Design of the Münster TPC – Filling Height

● Importance of liquid level:

– Electron extraction efficiency 
dependent on field strength

– Field strength highest between gate 
and anode

→ Highest signal rate there!

→ Current project!

● Level meters

– Cylindrical capacitors from bottom to 
top of TPC

– Change of filling height
→ change of capacity:

D. Schulte, Capacitance-Based Levelmeter Read-Out for the Münster Dual Phase Xenon Time Projection Chamber,
Bachelor thesis, 2016

PMTs

PMTs
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Shifter Date Stability Liq N2 ... Sign

Michael 2017-
10-02

ok ok mm

Alex 2017-
10-09

P2 
oscill.

ok af

Kevin 2017-
10-16

ok Refill! kg

...

Design of the Münster TPC – Critical Devices

● Gas system

– Pressure in TPC limited by rupture disc

– Prevent blocking of pump

● Slow Control

– Monitoring temperature, pressure, 
high voltage, gas flow cia LabView cRIO 
system

– Sends out mail and SMS alarms,
if certain parameters out of range

– Shifters: Manual protocolling of certain
parameters and device states

● Emergency prevention

– Uninterruptible power supply

NOT OK? ALARM!
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Light Collection Efficiency (LCE), Electron Lifetime (EL), Light Yield (LY)

● LCE: S1 generation not homogenous, as 
shown by LCE map

– Deeper generated S1 are bigger

● EL: Electrons catched by impurities 
(e.g. O2)

– S2 from deeper S1 events are 
smaller

● LY: Assigned energy per pe

● Use Kr-83m source for calibration

– Energy of 32.2 keV and 9.4 keV
(with 156 ns delay)
→ see talk of M. Wigard (4e)

Simulated LCE map for 7 eV photons 
measured with bottom PMTs

L. Althüser, GEANT4 simulations of the Muenster dual phase xenon TPC, Bachelor thesis, 2015
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Outlook

● Safety enhancement

● Liquid level adjustment 

● Energy calibration with Kr-83m

– Light collection efficiency
→ S1 correction

– Electron lifetime 
→ S2 correction

– Light yield
→ Corrected energy estimation

– Use other sources (e.g. Cs-137 with 662 keV photons)
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Thank you for your attention!
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Backup
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Purity Aspects – Electron lifetime

● Electron lifetime τ: mean time before 
attachement

● Electron attachement rate constant k 
dependent on field strength and 
impurity

● Exponential electron reduction by 
impurities: electronegative molecules, 
e.g. N2O, O2, …

– Purification by hot metal getter

– XENON1T: τ ≈ 450 µs (mean)

– Münster: electron lifetime not yet 
measured

E. Aprile, T. Doke, Liquid Xenon Detectors for Particle Physics and Astrophysics,
10.1103/RevModPhys.82.2053, 2009
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Purity Aspects – Photon absorption by impurities

E. Aprile, T. Doke, Liquid Xenon Detectors for Particle Physics and Astrophysics,
10.1103/RevModPhys.82.2053, 2009
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Electric Fields in Xenon

● Extraction yield of generated electrons 
from liquid to gaseous xenon 
dependent on field strength

– 100 % at Eextraction > 10 kV/cm 

● Electron drift velocity dependent on 
field strength

– Saturation at 3-10 kV/cm

E. Aprile, T. Doke, Liquid Xenon Detectors for Particle Physics and Astrophysics,
10.1103/RevModPhys.82.2053, 2009
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Signal Chain

Time:
1 sample ≈ 10 ns
1 Event contains 16k samples, i.e. 160 µs
Drift length: 17 cm; e- drift velocity: 2 mm/µs
→ Maximum drift time ≈ 85 µs

Trigger on S2-signals:

– Amplitude Threshold = 150 ADC (1.3 pe)

– Time threshold = 30 samples (300 ns)

– Recording of 2k samples after
and 14k samples before trigger
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Processor for Analyzing XENON (PAX)

C. Wittweg, XENON100 Dark Matter Search with the PAX Raw Data Processor for XENON1T,
Master thesis, 2016
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Processor for Analyzing XENON (PAX)

● Pulse area needs 5 sigma over baseline 
to be declared as hit

● Coincident hits are summed to peaks

● If lone hits occur, channels are marked as 
suspicious (reduction of noise)

● Peaks are classified as

– S1 (e.g. area < 50 pe, width < 100 
ns)

– S2 (e.g. area > 50 pe, width > 75 ns)

● S1 and S2 signals then get paired to 
interactions if S1 arrives before S2
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Processor for Analyzing XENON (PAX)

S1 S2
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