Correlation studies of IceCube neutrinos with subcatalogs of Fermi's 3rd catalog

Author: **Manuel Dörr**, Matthias Kadler, Karl Mannheim, Michael Kreter

Universität Würzburg

Motivation

- IceCube measured an extraterrestrial neutrino flux
- Neutrinos have energies up to the PeV regime

- Neutrino events have large directional errors
- No definite astrophysical counterparts were found yet

Credit: IceCube Collaboration, 2014

Flat-Spectrum Radio Quasars

- Most powerful active galactic nuclei (AGN) with relativistic jets
- Strong UV photon fields
- Brightest gamma-ray sources
- Hadronic models predict neutrino production via pion decay in PeV range for FSRQs

Credit: Katz & Spiering 2012

- Pion creation with UV photons possible
- Expected neutrino spectrum peaking in the PeV regime

See Kadler, M. et al. (2016)

Correlation with Fermi's 3rd catalog?

Correlation with Fermi's 3rd catalog?

Unbinned Maximum Likelihood Method

Maximisation of Likelihood with respect to the parameter n_s

$$\log(\mathcal{L}(n_s)) = \sum_{i=1}^N \log\left(\frac{n_s}{N} \cdot S_i + (1 - \frac{n_s}{N}) \cdot B_i\right)$$

Signal term

$$S_i = \frac{\sum_{j=1}^{N_{\text{sources}}} S_j(\vec{x}_i, \sigma_{\vec{x}_i}) \cdot \omega_j \cdot \epsilon_j^{\mathsf{s}}(E_i)}{\sum_{j=1}^{N_{\text{sources}}} \omega_j}$$

Background term

$$B_i = rac{\sum\limits_{j=1}^{N_{ ext{Bck}}} B_j(ec{x}_i, \sigma_{ec{x}_i}) \cdot \epsilon_j^{\scriptscriptstyle B}(E_i)}{N_{ ext{Bck}}}$$

See Glüsenkamp, T. (2016)

The algorithm creates likelihood curves similar to following plot:

Likelihood Curves

- Calculations are repeated several times
- Likelihood maximum of each run is plotted in histogram
- Histogram is fitted with Gaussian

- Results strongly depend on the size of the catalog
- No meaningful comparison between different tested catalogs possible
- Solution: Perfoming tests on randomized catalogs and compare tested catalog to randomized catalogs

Distance between tested catalog and random catalogs gives a correlation probability

Results

Catalog	Probability p	Significance
		$[\sigma]$
FSRQ	0.475	0.64
BL Lac	-0.855	-1.46
BCU	-0.393	-0.51
REF-Nu	0.997	2.98

Summary and Outlook

- Method allows to discriminate correlated and random catalogs
- Limitation: Large positional uncertainties of cascades
- Need more track events with energies above ~300 TeV

Thank You!

Backup Slides

IceCube

- Neutrino detector at the South Pole
- 86 strings with optical modules for detection of Cherenkov light from neutrino interaction products

Credit: Ageron et al., 2011

Credit: IceCube Collaboration

Monte Carlo Energy Distribution: 3.7 & 2.3 Powerlaw

