

AMIGA-like Muon Detector Simulations A prerequisite for composition studies and hadronic interaction tests

Mirko Scherer, Adviser Dr. M. Roth IKP, KIT Karlsruhe

Obertrubach, 8.10.2012

Pierre Auger Observatory

- Surface Detector Array (SD): ~1600 Water Cherenkov Detectors in a hexagonal grid with 1500 m spacing between stations covering 3000 km²
 + AMIGA Infill extension (61 stations in 750 m grid associated with buried scintillators (MD))
- Fluorescence Detector (FD): 4 stations with 6 fluorescence telescopes each
 - + HEAT extension
 - (1 station with 3 telescopes)
- AERA radio antenna extension

AMIGA Muon Detector (MD)

• *MD* currently in prototype phase called Unitary Cell (UC)

Deployed \rightarrow *Pre-UC* composed of seven 10 m² muon counter modules deployed in a hexagonal array with a position in the middle

Next Step $\rightarrow UC$ will be constructed in the same array but with 30 m² of muon counters per station

• Future \rightarrow all of the 750 m Infill stations will have partner MD stations

2 different sizes \rightarrow to reduce saturation near core position 2 different angles \rightarrow to reduce double counting

The Modules

muons with energy $E \ge 1$ GeV reach the scintillator

64 scintillator strips per module + one PMT

To maintain uniform shielding access tubes are filled with sand bags

← photomontage

MD Simulations

 CORSIKA showers used to run MC toy detector simulations

- Simulations include:
 - SD Stations of 750 m Infill array
 - ~30 m² muon counters at the same position as SD Stations
 - → Scintillator signal can be read at several depths underground (2, 3, 4 m)
 - Furthermore Dense Stations have been added for SD and MD
 - → located every 100 m between 300 m and 1200 m from the shower axis at four different azimuth angles

MD Underground Signals

- The signal difference for varying burial depths of the MDs is very small compared to the variance of the signals
- MD Underground Signals 7 50 Events: In this presentation data Log E / eV = 17.56 taken from the MDs at $\theta = 24.6 \deg$ Proton 3 m depth is used 5 2 m 4 3 m Signal (In S) 4 m 3 2 0 $^{-1}$ -200

400

600

800

Radius /m

1000

1200

MD Trigger

- MDs are triggered by their associated SD Stations
 → low level trigger T1 is passed locally
- SD has two independent T1 trigger modes:
 - TH-T1 → signal threshold discrimination (muons)
 - ToT-T1 → signal above threshold must be maintained more than 325 ns (electrons)

Efficiency (events)

- Function fitted to describe T3-Trigger Probability of infill array (minimum of 3 triggered SD stations required for reconstruction)
- Events with Trigger Probability below 99% will be cut out

Efficiency (stations)

- Function fitted to describe Lateral Trigger Probability (LTP)
- Stations with LTP below 99% will be cut out

Lateral Distribution Function (LDF)

 1st step → fit LDF model to data of distinctive energy/zenith bins to get parameter dependencies (50-100 simulated events per bin)

Presentation, 8.10.2012, Mirko Scherer

Mass, Energy, and Zenith Angle

Fits for different energy/zenith bins plotted together

Mass and energy dependence clearly visible

Only slope shows zenith angle dependence

LDF (Global Fit)

■ 2nd step → fit LDF model with energy/zenith dependent parameters to data from MC simulations with continuous CORSIKA shower library

 $^{17.0 &}lt; lgE < 19.0 \land 0 < \theta < 60$

Next Steps

- Fine tuning of LDF parametrisation $\rightarrow S_A = S_A(E)$ $\beta = \beta(E, \theta)$ $\gamma = \gamma(E, \theta)$
- Fit events with LDF to get Energy Estimator

Goal

- Composition studies using hybrid events with SD, FD, and MD information
- With SD, FD, and MD
 Include hadronic interaction models

$$\underbrace{S_{450}, x_{max}, S_A}_{E, A} \longrightarrow \underbrace{S_{450}, x_{max}, S_A}_{E, A, N_{\mu}}$$

system over-determined!

Real Data

 1st event detected by Pre-Unitary Cell (hybrid event also detected by SD and FD)

Presentation, 8.10.2012, Mirko Scherer