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Structure of this lecture:

• Neutron Stars: Introduction

– Stellar Evolution

– End Stages of Stellar Evolution

– Structure of Neutron Stars

• Neutron Stars: Radio Pulsars

– Discovery

– Radiation Mechanism

– Radio Pulsars as a Class

– Testing Relativity: Binary Pulsars

• Neutron Stars: X-Ray Binaries

– Neutron Stars in Binary Systems

– Continuum formation in the accretion column

– High Mass X-ray Binaries

– (Low Mass X-ray Binaries)



The Sun: A typical star
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Stars: Gas balls in hydrostatic equilibrium

The structure of stars is determined by a set of four coupled differential equations

which express the basic conservation and transport quantities always encountered

in physics:

1. Mass conservation

2. Momentum conservation (=hydrostatic equilibrium)

3. Energy conservation

4. Energy transport

and quantities expressing the physical properties of material, mainly:

1. Equation of state (=dependence of density of material from physical conditions)

2. Energy generation



Stars: Gas balls in hydrostatic equilibrium

The structure of stars is determined by a set of four coupled differential equations

which express the basic conservation and transport quantities always encountered

in physics:

Mass structure Pressure structure

(mass conservation) (hydrostatic equilibrium)

dM

dr
= 4πr2ρ(r)

dP

dr
= −ρ(r)

GM(r)

r2

Temperature structure Energy conservation

(e.g. radiative transfer)

dT

dr
= −

3

4ac

κρ(r)

T 3

L(r)

4πr2

dL

dr
= 4πr2ρ(r)ǫ(r)

and quantities expressing the physical properties of material, mainly:

• “equation of state”, P = P (T, ρ),

• energy generation, ǫ = ǫ(T, ρ, Z)

• Opacities κ(T, ρ, Z) = interaction of radiation with gas,



NASA

Stellar model: solution of structure equations



During normal stellar life: Gravitation balanced by thermal pressure:

Pg =
Fg

4πr2
(1)

Estimate P : Assume ρ = const.. Central Pressure =
∑

of gravitational force of

thin shells over whole star:

Pg = −

∫ R
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·
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·
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with ρ = M/

(
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3
πR3

)

: Pg = −
3

8π
G
M 2

R4 (3)

Normal star: Gravitational pressure blanced by internal (thermal) gas pressure:

Pi = nkT ∼
M

4
3πR

3 ·mH

kT (4)

Hydrostatic equilibrium =⇒ Pi = −Pg

M
4
3πR

3 ·mH

kT =
3

8π
G
M 2

R4
=⇒ M =

2kT

GmH
R =⇒ R =

GmHM

2kT
(5)

=⇒To keep star stable, vary radius (=density) and temperature.

This way, nuclear reactions are regulated and stars remain in equilibrium.



Evolution of the structure of a 1M⊙ star to the Helium flash (Maeder & Meynet, 1989).



If nuclear fuel is exhausted, no energy input into gas

=⇒Star collapses, generates energy by gravitational contraction.

=⇒Density increases until ideal gas law is not appropriate since QM effects be-

come important (Electrons are Fermions!)

This is the case when the Fermi energy ∼ avg. thermal energy of electrons.

Fermi energy (for H-gas):

ǫFermi =
~

2

2m

(

3π2n
)2/3

=
~

2

2m

(

3π2 ρ

mH

)2/3

(6)

If 3
2kT < ǫFermi: electrons are unable to transit into unoccupied state:

T

ρ2/3
<

~
2

3mek

(

3π2

mH

)2/3

∼ 105 K cm2 g−2/3
(7)

or expressed as electron particle density

n > ncrit = 5 × 1016 cm−3 · T 3/2
(8)

Estimate: For T = 107 K, ncrit ∼ 1027 cm−3. For an object with M = 1M⊙ this density corresponds

to R = 104 km, i.e., Earth-sized.



Pressure of a degenerate electron gas:

Remember your 1st semester:

P =
1

3
npv (9)

Typical electron separation in the degenerate electron gas:

∆x ·∆y ·∆z = (∆x)3 =
1

ne
=⇒ ∆x ∼ n

−1/3
e (10)

Since electrons are densely packed: Heisenberg!

∆p ·∆x ∼ ~ =⇒ p = ∆p ∼
~

∆x
= ~n

1/3
e (11)

and therefore with v = p/me:

Pdegen, nonrel =
1

3
ne · ~

2n
2/3
e ·m−2

e =
~

2

3me
n

5/3
e (12)

BUT: For typical WD centers (ρ ∼ 106 g cm−3), v ∼ 1010 cm s−1 → c

In this case we need to calculate relativistically, and for v = c find

Pdegen,rel. =
~c

3
n

4/3
e (13)



Are all white dwarfs stable?

The energy density of a plasma is

U =







3

2
P non-relativistic

3P relativistic
(14)

Therefore the total energy of a star/white dwarf is

Etot = Egrav + Egas = −
GM 2

R
+ UV (15)

Scaling relationships:

V ∝ R3 ρ ∝ R−3 U ∝ ρΓ ∝ R−3Γ (16)

where

Γ =

{

5/3 non-relativistic

4/3 relativistic
(17)

For a star with non-relativistic gas:

Etot = −
A

R
+

B

R3(Γ−1)
= −

A

R
+

B

R2
(18)

This has a minimum at a finite radius

=⇒ star is stable



Are all white dwarfs stable?

The energy density of a plasma is

U =







3

2
P non-relativistic

3P relativistic
(19)

Therefore the total energy of a star/white dwarf is

Etot = Egrav + Egas = −
GM 2

R
+ UV (20)

Scaling relationships:

V ∝ R3 ρ ∝ R−3 U ∝ ρΓ ∝ R−3Γ (21)

where

Γ =

{

5/3 non-relativistic

4/3 relativistic
(22)

For a star with relativistic gas:

Etot = −
A

R
+

B

R3(Γ−1)
= −

A

R
+
B

R
∝

1

R
(23)

This has no minimum

=⇒ star is not stable =⇒ White Dwarfs have a maximum mass of ∼ 1.4M⊙



Evolution of the internal structure of a 15M⊙ star.



Evolution of the internal structure of a 60M⊙ star.

Note the very strong mass loss!



Massive stars: Fusion possi-

ble until 56Fe

Photodesintegration sets in:

56Fe + γ −→ 13 4He + 4 n
4He + γ −→ 2 p + 2 n

. . . and Neutronization:

p + e− −→ n + νe

=⇒ Core collapse supernova

=⇒ Neutron Star



Neutron stars are stable because pressure is dominated by neutrons, not elec-

trons

=⇒Neutrons have much larger mass than electrons, and therefore are non-

relativistic

=⇒stable configuration exists

Let’s estimate the density:

De Broglie for relativistic particles (p ∼ mc)

λ =
h

p
∼

h

mc
(24)

where λ is the Compton wavelength

Therefore for degenerate neutrons

ρ ∼
mn

λ3
n

∼ 7 × 1014 g cm−3 (25)

=⇒Nuclear densities

=⇒Determination of precise equation of state is very difficult



The internal structure and

other physical properties of

neutron stars are virtually

unknown!

Some of the few facts

known:

• typical mass ∼1.4M⊙

• strong magnetic fields

(>1012 G)
for the cgs-challenged: 1 T =
104 G

=⇒ flux conservation

during SN explosion

• fast rotation
(P =msec to few 100 s)



Lattimer and Prakash (2001)

Mass-Radius-Relation for Neutron Stars depends strongly on EoS, i.e., mea-

suring M(R) would constrain nuclear equation of state.



Neutron stars are ∼10–

15 km in radius

=⇒Most isolated neutron

stars are difficult to ob-

serve

L = σT 4R2, RNS/R⊙ = 10−5

Most knowledge of neu-

tron stars comes from ra-

dio pulsars and neutron

stars in X-ray binaries.



During supernova collapse, angular momentum is conserved (Explosion: symmet-

ric)

Total angular momentum of homogeneous sphere:

J = Iω where I =
2

5
MR2

(26)



During supernova collapse, angular momentum is conserved (Explosion: symmet-

ric)

Total angular momentum of homogeneous sphere:

J = Iω where I =
2

5
MR2

(27)

Angular momentum conservation (Jbefore = JNS):

2

5
MbeforeR

2
beforeωbefore =

2

5
MNSR

2
NSωNS (28)

or

ωNS =

(

Mbefore

MNS

)(

Rbefore

RNS

)2

ωbefore or PNS ∼

(

RNS

Rbefore

)2

Pbefore (29)

(where P : rotation period)



During supernova collapse, angular momentum is conserved (Explosion: symmet-

ric)

Total angular momentum of homogeneous sphere:

J = Iω where I =
2

5
MR2

(30)

Angular momentum conservation (Jbefore = JNS):

2

5
MbeforeR

2
beforeωbefore =

2

5
MNSR

2
NSωNS (31)

or

ωNS =

(

Mbefore

MNS

)(

Rbefore

RNS

)2

ωbefore or PNS ∼

(

RNS

Rbefore

)2

Pbefore (32)

(where P : rotation period)

Example: Rbefore = 700000 km (sun), RNS = 15 km, PSun = 27 d =⇒ PNS = 1 ms

Neutron Stars are extremely fast rotators.
close to break-up speed!



Discovery: Bell & Hewish (1967):

Radio Pulsar

radio emission is pulsed,

very short periods: milliseconds to a few

seconds

Sounds:

• PSR 0329 – a normal pulsar (P = 0.714519 s)

• PSR 0833 – the Vela pulsar, a faster, younger pulsar in the Vela supernova remnant (P =

89 msec)

• Crab pulsar – the youngest pulsar (P = 33 ms)

• B1937 – one of the fastest pulsars (P = 0.00155780644887275 s)

See/hear http://www.jb.man.a
.uk/~pulsar/Edu
ation/Sounds/sounds.html for more examples.

http://www.jb.man.ac.uk/~pulsar/Education/Sounds/sounds.html


Pulsars at different wavelengths

Pulsations not only in the radio regime, but also at optical, X-ray, and γ-ray

wavelengths (but not in all cases)



Axis of
Rotation

Radiation
beam

Radiation
beam

“Lighthouse model” for pulsars

Another conserved quantity:

magnetic flux: Φ = BR2

Magnetic field after SN:

BNS =

(

Rbefore

RNS

)2

Bbefore

=⇒neutron stars have strong magnetic

fields (typical: B ∼ 106 . . . 108 T)

Radio pulsars are fast rotating (iso-

lated) neutron stars with strong mag-

netic fields.



Axis of
Rotation

Radiation
beam

Radiation
beam

“Lighthouse model” for pulsars

Radio-emission is related to magnetic

field of neutron star.

For a dipole:

B(r) = Bs

(

r

Rs

)−3

(33)

Because of rotation, linear velocity of B-

field reaches c at the light cylinder

RL =
c

ω
=

c

2π
P (34)

at a few 1000 km from object

The rotating B-field must radiate away energy in order not to violate causal-

ity



Amount of energy in light cylinder:

U ∼
B2

8π
=

1

8π

(

Bs

(

RL

Rs

)−3
)2

=
B2

s

8π

R6
s

R6
L

(35)

Energy flux radiated away per unit area is given by Poynting vector, S = Uc

Therefore loss of energy (remember RL = c/ω):

Ė = −4πRL · U = −
1

2

B2
sR

6
s

R4
L

c = −
1

2
B2

sR
6
sω

4 c−3 (36)

This energy comes from slow down of rotation of neutron star:

d

dt

(

Iω2

2

)

= Iωω̇ = −
B2

sR
6
sω

4

2c3
(37)

This means that by measuring ω, ω̇ (or the pulse period P and its rate of change,

Ṗ ), we can measure B:

B = −
Iω̇c3

Rsω3
=

I

4π2

PṖc3

R6
s

(38)

Typical values found are 1011 < B < 1013 G.



Pulsars show characteristic distri-

bution in P -Ṗ -diagram

Gives indication on age evolution:

• Born with high B-field and high P

• Slowdown with ∼ constant P

• B-field decay?

• cross death line

• pulsars in binary systems may be

reborn as millisecond pulsars.

Lorimer, Liv. Rev. Rel.



Lorimer

Some pulsars are born in binary systems, some of these evolve to binary pulsars



Pulsars are very precise

clocks

=⇒Can measure orbital po-

sition of neutron star us-

ing pulse arrival time

measurements.

Slight delays in arrival times

are due to relativistic effects,

mainly due to emission of

gravitational waves.

Note: this is still a measurement in

the weak field limit!

I. Stairs



I. Stairs

Binary pulsars allow precise measurement of neutron star masses



Lorimer



(SMC X-1; Dennerl, Dissertation MPE)

X-ray binary: neutron star

accretes mass from donor

star

• Low Mass X-ray Bina-

ries (LMXB): donor late

type =⇒ mainly old

systems
low B-fields, X-ray bursts,

Quasi-Periodic Oscillations

=⇒ very interesting, but un-

fortunately cannot discussed

here for time reasons.

• High Mass X-ray Bi-

naries (HMXB): donor

early type =⇒ mainly

young systems



Accreting plasma couples to B-

field at Alfvén radius

rmag =

(

8π2

G

)1/7(R12
⋆ B4

p

MṀ2

)1/7

For typical neutron star parameters
(1.44M⊙, B ∼ 1012 G):
rmag ∼ 1800 km.

Typical parameters of accretion

column:

• Ṁ ∼ 10−9...−11 M⊙ yr−1

• v ∼ 0.7 c

Useless number of the day:
10−9 M⊙ yr−1 ∼ 6 × 1013 kg s−1,
or 1 Lake Erie every 8 sec.

I. Negueruela
(after Davidson & Ostriker, 1973)
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Accretion process can be very violent

=⇒ strong short term variations of Ṁ



For high luminosity systems

(=high mass accretion rate):

Radiative shock dominates

formation of observed contin-

uum.

For low luminosity systems:

accretion flow stopped by

Coulomb interactions. Even

less well understood.

Physics:

• accretion mound produces soft X-rays (bremsstrahlung)

• X-rays are upscattered in accretion shock (bulk motion Comptonization)

• hard X-rays diffuse through walls of accretion column



?, Fig. 6



Strong field at NS poles: Quantization of electron energies ⊥ B-field lines (Landau levels):

En = mec
2

√

1 + 2n(B/Bcrit) sin
2 θ − 1

sin2 θ

e

B

p‖: momentum of electron ‖ B-field, n: major quantum number, Bcrit is

Bcrit =
m2

ec
3

e~
∼ 4.4 × 1013 G

For B ≪ Bcrit, distance between Landau levels:

Ecyc =
~e

mec
B = 11.6 keV

(

B

1012 G

)

(12 −B12-rule)

=⇒ Cyclotron Resonance Scattering Features (“Cyclotron lines”) at

En = nEcyc = (1 + z)En,obs

(1 + z ∼ 1.25 . . . 1.4; grav. redshift!)

First discovery: Trümper et al. (1978)
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Hot plasma

=⇒ thermal broadening:

• Lines narrow perpendicular

to B-field

• Lines broad for motion

along B-field

Expected line width

∆EFWHM

Ecyc
∼
√

kTe| cos θ|

(∼ 6 keV for kTe = 40 keV)

Truemper et al. (1978), Meszaros (1992)

B = 2.2 × 1012 G,
θ= angle between B-field and photon di-
rection; Schwarm (priv. comm.)
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V0332+53: Cyclotron lines at 27, 51, and 74 keV; complex fundamental.
2nd source after 4U 0115+63 with more than 2 lines.

Line ratios 6= 2, agrees with QED prediction; also require scattering angle of &

60◦, in agreement with expectation from resonant cross-section.
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V0332+53: Cyclotron line energy depends on luminosity



Variation of cyclotron

line is probably caused

by interaction of ram

pressure of accre-

tion stream and radi-

ation pressure in two

different luminosity

regimes.

(Mihara et al., 2007, Nakajima, 2008, Dauser, 2008)



The End


	Preamble

