Neutrinoless double beta decay

Schule für Astroteilchenphysik

14. Oktober 2010

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Thilo Michel

Friedrich-Alexander-Universität Erlangen-Nürnberg

Agenda

• What is (neutrinoless) double beta decay ?

• What can a measurement of the $0\nu\beta\beta$ half-life tell us ?

• What are the basic requirements for an experiment ?

• How do some experiments measure ?

The problem with the beta decay in 1930

The solution

Wolfgang Pauli in his famous letter to the "group of the radioactives" (1930)

Liebe radioaktive Damen und Herren,

[...] Das kontinuierliche Betaspektrum wäre dann verständlich unter der Annahme, dass beim Betazerfall mit dem Elektron jeweils noch ein Neutron emittiert wird, derart, dass die Summe der Energien von Neutron und Elektron konstant ist. [...] Ich gebe zu, dass mein Ausweg vielleicht von vornherein wenig wahrscheinlich erscheinen mag [...] Aber nur wer wagt, gewinnt [...] Also, liebe Radioaktive, prüfet und richtet.

$2\nu\beta^{-}\beta^{-}$ and $0\nu\beta^{-}\beta^{-}$: two forms of double beta decays

Double beta decays (2 $\nu\beta^{-}\beta^{-}$ and **0** $\nu\beta^{-}\beta^{-}$)

2νβ β : Neutrino accompanied

 $(\mathsf{A},\mathsf{Z}) \to (\mathsf{A},\mathsf{Z}{\texttt{+}2}) \texttt{+}2 \texttt{ e}{\texttt{-}} \texttt{+} 2\overline{\nu}$

- Does NOT violate Lepton-numberconservation
- Is an allowed second order process in the SM
- Is possible with massless or massive Dirac or Majorana neutrinos
- Has been observed in a number of experiments/nuclei

 $\mathbf{0}\nu\beta\beta$: Neutrinoless

$$(A,Z) \rightarrow (A,Z+2)$$
 +2 e-

- Violates Lepton-number-conservation by ∆L=2
- Is NOT allowed in the SM
- Requires non-zero rest mass (already prooved)
- Only possible if neutrino is its own antiparticle (**Majorana-particle**)

Generic diagrams

Schechter-Valle theorem (1982)

- Independent of the exact processes in the "BLACK BOX", the appearance of the 0vββ decay implies the existence of an effective Majorana mass term
- This means: if 0vββ exists, neutrinos are Majorana particles

FIG. 2. Diagram showing how any neutrinoless double- β decay process induces a $\overline{\nu}_e$ -to- ν_e transition, that is, an effective Majorana mass term.

Motivation of the non-zero rest mass needed for $0\nu\beta\beta$

- Weak interaction couples only to (left/right)-handed (particles/antiparticles)
- Helicity not well defined for a massive particle
- Neverthless the following arguments are suggestive:
 - Emitted anti-neutrino has mass
 - A "virtual" Lorentz transformation into a "faster" system can be performed
 - Orientation of momentum is reversed in this system
 - Helicity changes sign
 - "Conversion" from right-handed
 to left-handed particle
 (here I mix helicity with chiriality, which is in principle not correct)

How can we see $0_{\nu\beta\beta}$?

- Rate of $2\nu\beta\beta$ is several orders of magnitude higher than the rate of $0\nu\beta\beta$
- The relation depends for example on the effective neutrino mass, the NME and phase space volume
- For sensitivity to $< m_{\beta\beta} >= 100 \text{ meV}$: T_{1/2} between 10²⁶ - 10²⁷ a (age of the universe (WMAP): 1,37 * 10¹⁰ a)

Signature

- A peak in the sum energy spectrum at the full Q-value (for decays into ground state)
- Energy resolution should be as good as possible to keep contribution of **unavoidable** $2\nu\beta\beta$ decay in "peak region" as low as possible

Other possible neutrino accompanied channels of second order

In principle these decays could occur without neutrino emission, provided that neutrinos are of Majorana-type

History of double beta decay (1/2)

- 1935
 - Double beta decay considered in 1935 by Maria Goeppert-Mayer (suggestion of Eugene Wigner): estimated half-life of 10¹⁷ years with 2 electrons and 2 antineutrinos carrying 10 MeV
- 1937
 - Ettore Majorana developed theory in which neutrinos were their own antiparticles
 - Giulio Racah suggested test of Majorana theory with neutrinoless double beta decay
- 1939
 - Furry calculated approximate rates for $0\nu\beta\beta$

Ettore Majorana

- 1950
 - First geochemical observation of $2\nu\beta\beta$ on ¹³⁰Te lead to half-life of

$$T_{1/2}^{\ \ \beta\beta}(^{130}Te) = 1.4 \times 10^{21}a$$

History of double beta decay (2/2)

- 1952
 - Primakoff calculated electron-electron angular correlations and electron energy spectra for $2\nu\beta\beta$ and $0\nu\beta\beta$
- 1955
 - Reaction (suggested by Majorana in 1937) was NOT found by Raymond Davis' chemical experiment $\overline{\nu_e} + {}^{37}Cl \rightarrow {}^{37}Ar + e^{-1}$
- 1987
 - First laboratory observation of $2\nu\beta\beta$ by Elliot
- 2001
 - A subgroup of the Heidelberg-Moscow collaboration (Klapdor-Kleingrothaus et al.) reported observation of $0\nu\beta\beta$ in ⁷⁶Ge.
- Today:
 - Experiments like GERDA or MAJORANA are already on the way to test the claim.

Agenda

• What is (neutrinoless) double beta decay ?

• What can a measurement of the $0\nu\beta\beta$ half-life tell us ?

• What are the basic requirements for an experiment ?

• How do some experiments measure ?

Neutrinos and their mixing

• Neutrino flavors $|\nu_{\alpha}\rangle$ (α =e, μ , τ) are mixtures of mass eigenstates $|\nu_{i}\rangle$ (i=1,2,3)

$$\left| \boldsymbol{\nu}_{\alpha} \right\rangle = \sum_{i} \boldsymbol{U}_{\alpha i} \left| \boldsymbol{\nu}_{i} \right\rangle$$

 Matrix U (Pontecorvo-Maki-Nakagawa-Sakata-Matrix, PMNS) can be parametrised as

$$U = \begin{pmatrix} c_{13}c_{12} & c_{13}s_{12} & s_{13} \\ -c_{23}s_{12} - s_{23}s_{13}c_{12}e^{i\delta} & c_{23}c_{12} - s_{23}s_{13}s_{12}e^{i\delta} & s_{23}c_{13}e^{i\delta} \\ s_{23}s_{12} - c_{23}s_{13}c_{12}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{13}s_{12}e^{i\delta} & c_{23}c_{13}e^{i\delta} \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_{21}/2} & 0 \\ 0 & 0 & e^{i\alpha_{31}/2} \end{pmatrix}$$

where $s_{ij} = sin (\theta_{ij})$ and $c_{ij} = cos(\theta_{ij})$, θ_{ij} are the mixing angles,

 δ is the Dirac-phase and α_{21} , α_{31} are the Majorana phases that are only relevant if neutrinos are of Majorana type

Some properties of neutrinos

Neutrino Properties

See the note on "Neutrino properties listings" in the Particle Listings. Mass m < 2 eV (tritium decay) Mean life/mass, $\tau/m > 300 \text{ s/eV}$, CL = 90% (reactor) Mean life/mass, $\tau/m > 7 \times 10^9 \text{ s/eV}$ (solar) Mean life/mass, $\tau/m > 15.4 \text{ s/eV}$, CL = 90% (accelerator) Magnetic moment $\mu < 0.54 \times 10^{-10} \mu_B$, CL = 90% (solar)

Number of Neutrino Types

Number $N = 2.984 \pm 0.008$ (Standard Model fits to LEP data) Number $N = 2.92 \pm 0.05$ (S = 1.2) (Direct measurement of invisible Z width)

Neutrino Mixing

The following values are obtained through data analyses based on the 3-neutrino mixing scheme described in the review "Neutrino Mass, Mixing, and Oscillations" by K. Nakamura and S.T. Petcov in this *Review*.

 $\begin{array}{l} \sin^2(2\theta_{12}) = 0.87 \pm 0.03 \\ \Delta m^2_{21} = (7.59 \pm 0.20) \times 10^{-5} \ \text{eV}^2 \\ \sin^2(2\theta_{23}) > \ 0.92 \ ^{[l]} \\ \Delta m^2_{32} = (2.43 \pm 0.13) \times 10^{-3} \ \text{eV}^2 \ ^{[l]} \\ \sin^2(2\theta_{13}) < \ 0.15, \ \text{CL} = 90\% \end{array}$

What can measured half-lifes of $0\nu\beta\beta$ tell us ?

• Different from neutrino mass determined with beta decay experiments:

$$\left\langle m_{\beta} \right\rangle = \sqrt{\sum_{i=1}^{3} \left| U_{ei} \right|^2 m_i^2}$$

Nuclear matrix elements: sources of errors for calculations of the effective Majorana mass

0νββ • Use $2\nu\beta\beta$ data as a check for 3.0 the calculation methods of NMEs Φ RQRPA 2.5 Calculation methods: ē o QRPA Quasiparticle Random Phase 2.0 Approximation (QRPA) Renormalized QRPA Shell Model ₫ ₹ ₽ Uncertainties in the NME of 1.0 Φ $0\nu\beta\beta$ at least 30 % (depending on isotope), but progress 0.5 is being made ¹³⁶Xe 0.0 ¹³⁰Te ¹⁰⁰Mo 76 Ge Uncertainties depend on nucleus

Neutrino mass hierarchies

Effective Majorana mass for the hierarchies

The effective Majorana mass is defined as
$$\left|\left\langle m_{\beta\beta}\right\rangle\right| \equiv \left|m_1 \left|U_{e1}\right|^2 + m_2 \left|U_{e2}\right|^2 e^{i\alpha_{21}} + m_3 \left|U_{e3}\right|^2 e^{i\alpha_{31}}\right|$$

Quasi-degenerate hierarchy $m_1 \approx m_2 \approx m_3 \equiv m_{\overline{\nu}_e}$

$$\begin{split} \left| \left\langle m_{\beta\beta} \right\rangle \right| &\cong m_{\overline{\nu}_{e}} \left| \left(\cos^{2} \theta_{sol} + \sin^{2} \theta_{sol} \cdot e^{i\alpha_{21}} \right) \cos^{2} \theta_{13} + \sin^{2} \theta_{13} e^{i\alpha_{32}} \right| \\ \left| \left\langle m_{\beta\beta} \right\rangle \right| & \text{ is sensitive to } m_{\overline{\nu}_{e}}, \, \alpha_{21} \text{ and } \alpha_{31} \end{split}$$

Inverted hierarchy

$$\sqrt{\Delta m_{atm}^2} \cos 2\theta_{sol} \le \left| \left\langle m_{\beta\beta} \right\rangle \right| \cong \sqrt{\left(1 - \sin^2 (2\theta_{sol}) \sin^2 \frac{\alpha_{21}}{2} \right)} \Delta m_{atm}^2 \le \sqrt{\Delta m_{atm}^2}$$

$\left|\left\langle m_{\beta\beta}\right\rangle\right| \ge 50 meV$

Estimated ranges

$$10meV \le \left|\left\langle m_{\beta\beta}\right\rangle\right| \le 80meV$$

Normal hierarchy

$$\left|\left\langle m_{\beta\beta}\right\rangle\right| \cong \left|\sqrt{\Delta m_{sol}^2}\cos^2\theta_{13}\sin^2\theta_{sol} + \sqrt{\Delta m_{atm}^2}\sin^2\theta_{13}e^{i\alpha_{33}}\right\rangle$$

$$few \cdot 10^{-4} eV \le \left|\left\langle m_{\beta\beta} \right\rangle\right| \le 8.5 meV$$

The link between $0\nu\beta\beta$ and the neutrino mass hierarchy

Unknown Majorana phases and uncertainties in parameters

Dirac- and Majorana phases

$$U = \begin{pmatrix} c_{13}c_{12} & c_{13}s_{12} & s_{13} \\ -c_{23}s_{12} - s_{23}s_{13}c_{12}e^{i\delta} & c_{23}c_{12} - s_{23}s_{13}s_{12}e^{i\delta} & s_{23}c_{13}e^{i\delta} \\ s_{23}s_{12} - c_{23}s_{13}c_{12}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{13}s_{12}e^{i\delta} & c_{23}c_{13}e^{i\delta} \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_{21}/2} & 0 \\ 0 & 0 & e^{i\alpha_{31}/2} \end{pmatrix}$$

Dirac-phase

- does affect neutrino oscillations
- can violate CPinvariance
- difficult to measure, but in principle possible with long baseline experiments

Majorana-phases

- do NOT affect neutrino oscillations
- can violate CPinvariance
- CP is NOT violated if $\alpha_{_{21}}, \alpha_{_{31}} \in \{0, \pm \pi\}$

Combination of

 $\left< m_{_{etaeta}} \right>$ and $\left< m_{_{eta}} \right>$

from 0νββ and beta decay experiments (like KATRIN) plus knowledge of mixing angles allow check of CP violation for neutrinos

Agenda

• What is (neutrinoless) double beta decay ?

• What can a measurement of the $0\nu\beta\beta$ half-life tell us ?

• What are the basic requirements for an experiment ?

• How do some experiments measure ?

The "source" nucleus selection

- Typical $0\nu\beta^-\beta^-$ or $2\nu\beta^-\beta^-$ nucleus is an even-even nulceus
- Pairing forces stronger than in (Z+1,A) neighbour, but weaker than in (Z+2, A) nucleus
- "Single beta decay" is blocked by energy conservation
- There are only 35 candidates in the table of isotopes

(Z,A) (Z+1,A) (Z+2,A)

The "source" nucleus selection

From a presentation of Volker Schulz (University of Tübingen) and modified

The "source" nucleus - practical requirements

Wish

- Large natural abundancy: enrichment requires less process steps or no enrichment at all needed
- Easy enrichment process
- Large Q-value: Phase space volume is proportional to Q^5 for $0\nu\beta\beta$ and so is the rate (statistics!)
- Low background in "source volume": chemically clean and no long-lived radioactive isotopes
- If source = detector: the material must give a detector with good energy resolution
- Q-value > 2.615 MeV: No background from γ-lines of nuclides in natural ^{235/238}U- and ²³²Th-decay chains

Good example

- ¹³⁰Te (34.5%)
- ¹³⁶Xe
- ⁴⁸Ca (Q=4.27 MeV),
 ¹⁵⁰Nd (Q=3.37 MeV)
- ¹³⁶Xe
- ⁷⁶Ge
- ¹¹⁶Cd (Q=2.81 MeV)

Background reduction if Q-value is larger than the highest γ energy in natural decay chains (²⁰⁸TI)

Some candidates for the source nucleus

Isotope	Q-value [keV]	Natural abundance [%]		
Ca 48	4271	0.187	5	1
Ge 76	2039	7.8	4.5	
Se 82	2295	9.2	- 48Ca	
Zr 96	3350	2.8	4	
Mo 100	3034	9.6		
Pd 110	2013	11.8	2 3.3 150Nd	
Cd 116	2809	7.5		
Sn 124	2288	5.64	Ø 116Cd 130Te	
Te 130	2529	34.5	2.5 - • 136Xe	
Xe 136	2479	8.9	2 110Pd	
Nd 150	3367	5.6	1.5 ⁶ 10 20 30 40 5	50

Material for semiconductor detectors

natural abundance (%)

Importance of the NME and the phase space

$$\Gamma_{1/2}^{0\nu} = G_{0\nu}(Q_{\beta\beta}, Z) |M_{0\nu}|^2 |\langle m_{\beta\beta} \rangle|^2$$

Decay rate = Phase space volume X squared matrix element X squared effective Majorana mass

Current (2007) knowledge on $2\nu\beta\beta$ / $0\nu\beta\beta$

2νβ⁻β⁻

	Isotope	$T_{1/2}^{2\nu}$ (years)
	^{48}Ca	$(4.2^{+2.1}_{-1.0}) imes 10^{19}$
	$^{76}\mathrm{Ge}$	$(1.5\pm 0.1) imes 10^{21}$
	$^{82}\mathrm{Se}$	$(0.92\pm 0.07) imes 10^{20}$
low	$^{96}\mathrm{Zr}$	$(2.0\pm 0.3) imes 10^{19}$
	$^{100}\mathrm{Mo}$	$(7.1 \pm 0.4) imes 10^{18}$
hiah	$^{116}\mathrm{Cd}$	$(3.0\pm 0.2) imes 10^{19}$
>	128 Te	$(2.5 \pm 0.3) imes 10^{24}$
¹³⁰ Ba	a EC-EC	$C(2\nu)~(2.2\pm0.5) imes10^{21}$
	$^{130}\mathrm{Te}$	$(0.9\pm 0.1) imes 10^{21}$
	$^{150}\mathrm{Nd}$	$(7.8 \pm 0.7) imes 10^{18}$
	$^{238}\mathrm{U}$	$(2.0\pm 0.6) imes 10^{21}$

Ονβ⁻β⁻

	Isotope Technique		$T_{1/2}^{0\nu}$
	⁴⁸ Ca	CaF_2 scint. crystals	$> 1.4 imes 10^{22} { m ~y}$
imits	$^{76}\mathrm{Ge}$	enrGe det.	$> 1.9 imes 10^{25} { m ~y}$
est li	$^{76}\mathrm{Ge}$	enrGe det.	$(2.23^{+0.44}_{-0.31}) \times 10^{25} \text{ y} (1\sigma)$
High	$^{76}\mathrm{Ge}$	enrGe det.	$> 1.57 imes 10^{25} { m ~y}$
-	82 Se	Thin metal foils and tracking	$>2.1 imes10^{23}~{ m y}$
	$^{100}\mathrm{Mo}$	Thin metal foils and tracking	$> 5.8 imes 10^{23} { m ~y}$
	$^{116}\mathrm{Cd}$	$^{116}CdWO_4$ scint. crystals	$> 1.7 imes 10^{23} { m ~y}$
	$^{128}\mathrm{Te}$	geochemical	$> 7.7 imes 10^{24} { m ~y}$
	$^{130}\mathrm{Te}$	TeO_2 bolometers	$> 3.0 imes 10^{24} { m ~y}$
	$^{136}\mathrm{Xe}$	Liq. Xe scint.	$>4.5 imes10^{23}~{ m y}^a$
	$^{150}\mathrm{Ne}$	Thin metal foils and tracking	$> 3.6 imes 10^{21} { m ~y}$

Moore's law of $0\nu\beta\beta$ searches

Modified from S. Elliott et al., Annu. Rev. Nucl. Part. Sci. 2002. 52:115–51, doi: 10.1146/annurev.nucl.52.050102.090641 31

Three experimental approaches

The impact of energy resolution: simulations for ¹⁰⁰Mo

Y. Zdesenko, "Colloquium : The future of double beta decay research", REVIEWS OF MODERN PHYSICS, VOLUME 74 33

Agenda

• What is (neutrinoless) double beta decay ?

• What will a measurement of the $0\nu\beta\beta$ half-life tell us ?

• What are the basic requirements for an experiment ?

• How do some experiments measure ?

Future experiments (some already started)

Experiment	Isotope	Experimental approach
CANDLES	^{48}Ca	Several tons of CaF_2 crystals in Liquid scintillator
COBRA	$^{116}Cd, ^{130}Te$	420 kg CdZnTe semiconductors
CUORE	$^{130}{ m Te}$	750 kg TeO_2 cryogenic bolometers
DCBA	$^{150}\mathrm{Nd}$	20 kg Nd layers between tracking chambers
EXO	136 Xe	1 ton Xe TPC (gas or liquid)
GERDA	$^{76}\mathrm{Ge}$	~ 40 kg Ge diodes in LN ₂ , phase 3 with MAJORANA
MAJORANA	$^{76}\mathrm{Ge}$	~ 180 kg Ge diodes, expand to larger masses
MOON	^{100}Mo	several tons of Mo sheets between scintillator
SNO+	$^{150}\mathrm{Nd}$	1000 t of Nd-loaded liquid scintillator
'LNGS'	$^{150}\mathrm{Nd}$	10 ton Nd-loaded liquid scintillator
SuperNEMO	82 Se(?), 150 Nd (?)	100-200 kg of Se or Nd foils between TPCs
KamLAND	^{136}Xe	300 kg (2013), 1 ton (2015?) of Xe in liquid scintillator
XMASS	136 Xe	10 t of liquid Xe
NEXT	136 Xe	High Pressure Xe TPC

small scale experiments will expand, this is not a complete list !

Some more details on experiment or predecessor experiment in this talk

Heidelberg-Moscow

5 HPGe detectors in LNGS (Gran Sasso underground laboratory in Italy, 3400 m w.e.)

The ⁷⁶Ge candidate

37

Typical background spectrum

The sensitivity of a $0\nu\beta\beta$ experiment

The half life to which an experiment is sensitive with a certain confidence level can be expressed as: (provided that the fluctuation of the background follows Gaussian distribution)

$$T_{1/2}^{0\nu\beta\beta}(n_{\sigma}) = \frac{4.14 \times 10^{26} a}{n_{\sigma}} \left(\frac{\varepsilon \cdot \eta}{W}\right) \sqrt{\frac{M \cdot T}{b \cdot \Delta E}}$$

 n_{σ}

Number of standard deviations characterizing C.L. (e.g. C.L. of 99.73 % corresponds to n_{σ} =3)

- \mathcal{E} Detection efficiency
- η Isotopic abundance
- W Atomic weight
- *M* Total mass of source material
- *T* Total measuring time
- b Specific background rate in peak region (cut) given in counts/(keV kg a)
- ΔE Spectral width of experiment (cut width) in keV

Example: Estimation of potential half life sensitivity (4σ) of Heidelberg-Moscow (HM) experiment (⁷⁶Ge)

$$n_{\sigma} = 4$$

 $\varepsilon = 0.95$
 $\eta = 0.86$
 $W = 76$
 $M \cdot T = 71.7 kg \cdot a$ <sup>11 kg of enriched ⁷⁶Ge
 $b = 0.11 \frac{counts}{keV \cdot kg \cdot a}$ @ 2039 keV
 $\Delta E = 3.27 keV$</sup>

If all numbers are correct, HM was able (4 σ) to measure half-life for $0\nu\beta\beta$ (⁷⁶Ge) up to $T_{1/2}^{0\nu\beta\beta}$ (4 σ , ⁷⁶Ge, HM) = 1.9 \cdot 10^{25} a

The claim of a part of the HM-collaboration

- A sub-group of the HM-collaboration (Klapdor-Kleingrothaus et al.) claimed to have observed $0\nu\beta\beta$
- Claimed values (99.97 % C.L.)

$$T_{1/2}^{0\nu} = (2.23 \pm 0.4) \cdot 10^{25} a$$
$$\left\langle m_{\beta\beta} \right\rangle = 0.32_{-0.03}^{+0.03} eV$$

http://www.klapdor-k.de

The observation

A subgroup of the Heidelberg-Moscow collaboration claimed to have seen (28.75 +- 6.86) $0\nu\beta\beta$ -events in ⁷⁶Ge

GERDA - the Germanium Detector Array

3 phases of GERDA

- Phase I (2009-2011):
 - 18 kg ⁷⁶Ge (from Heidelberg-Moscow and IGEX)
 - 15 kg ^{nat}Ge
 - Background level of 10⁻² counts/kg/kev/a (=10 % of HM)
 - Half life limit: 2.2 x 10²⁵ a (90 % C.L., 15 kg years)
 - Test existing claim within 1 year (6 counts with 0.5 counts background)
- Phase II (>2011):
 - Add 20 kg of segmented Ge-diodes
 - Background level of 10⁻³ counts/kg/keV/a
 - Several detectors depleted in ⁷⁶Ge (systematics check)
 - Half life limit: 2 x 10²⁶ a (90 % C.L., 100 kg years)
 - Sensitivity to Majorana mass: 90 290 meV
- Phase III (worldwide GERDA-MAJORANA collaboration):
 - Depends on physics output of phases 1 and 2
 - Test to Majorana masses of (some) 10 meV

Pulse shape analysis: a way to discriminate multi-site background from single site signal

18-fold segmented coaxial HPGe-detectors for GERDA Phase II

- High purity germanium detectors
- Cooled with LAr
- Full depletion at 2200 V
- Operating bias voltage
 >= 3000 V
- Multi site event: signal appears at output of several segments
- Improves background rejection

CUORICINO in LNGS

- 40.7 kg of ^{natural/130/128}TeO₂ crystals at 8-10 mK
- Temperature change ∆T measured with high-resistance germanium thermistors thermally coupled to crystals
- $0\nu\beta\beta$ -event causes $\Delta T=1.77*10^{-4} \text{ K}$
- M*T=11.83 kg*a of ¹³⁰Te
- Energy resolution 8 keV (FWHM)
- Background:

$$b = (0.18 \pm 0.01) \frac{counts}{keV \cdot kg \cdot a} @2530keV$$

Results (2008)

$$T_{1/2}^{0\nu}(^{130}Te) > 3.0 \times 10^{25} a \qquad (90\% \text{ C.L.}$$

$$\left< m_{\beta\beta} \right> < 0.19 - 0.68 eV$$

To be continued with CUORE (750 kg)

$$\left\langle m_{\beta\beta} \right\rangle_{sensitivity} = 0.02 - 0.05 eV$$

The Neutrino Ettore Majorana Observatory NEMO-3

NEMO-3: Some results

EXO - the Enriched Xenon Observatory

- EXO-200 is a prototype of the ton scale experiment EXO
- Search for $0\nu\beta\beta$ in ¹³⁶Xe (Q-value: 2479 keV)
- Source: 200 kg liquid Xe enriched to 80 % (¹³⁶Xe)
- Liquid Xenon volume is a Time-Projection-Chamber
- Expected energy resolution (σ) approx.
 1.6 % at 2.5 MeV
- About 50.000 Xe-atoms ionized by 1 MeV electron
- EXO-collaboration: University of Alabama, Universität Bern,Caltech,Carleton University,Colorado State University, UC Irvine,ITEP (Moscow),Laurentian University,University of Maryland, University of Massachusetts - Amherst, SLAC, Stanford, Technische Universität München

The prototype (EXO-200) at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico (2000 m w.e.)

EXO-200

Х

► Z

• Ionization signal (later):

- electrons from ionization are drifted to wire grids (x,y) and form electric signal
- z-coordinate is determined from time difference between prompt scintillation and the (later) ionization signal (drift velocity known)

• Scintillation light (first signal):

- (optical) photons from recombination of (ionization) electrons with Xenon ions trigger avalanche-photodiodes (APD) in arrays
- Strength anti-correlated with strength of ionization signal

Expected sensitivity

(copper on kapton, no glue)

Half chamber mock-up model

EXO: background free with barium tagging ?

A photo of a single Ba+ ion in vacuum

Expected sensitivity of EXO-200:

$$T_{1/2,sensitivity}^{0\nu} (^{136}Xe) = 6.4 \times 10^{25} a$$

$$\left\langle m_{\beta\beta} \right\rangle_{sensitivity} = 133 meV \quad \text{(QRPA)}$$

$$\left\langle m_{\beta\beta} \right\rangle_{sensitivity} = 186 meV \quad \text{(Shell Model)}$$

Assumptions: T=2 a, M=200 kg, energy resolution 1.6 % at 2.5 MeV, 70 % efficiency

Barium tagging principle for EXO

$$0\nu\beta\beta, 2\nu\beta\beta$$

$$^{136}Xe \xrightarrow{\downarrow} {}^{136}Ba^{++} + e^{-} + e^{-}$$

 $^{136}Ba^{++} + e^- \rightarrow ^{136}Ba^+$

- ${}^{136}Ba^+$ is in $6^2S_{1/2}$ state
- A "blue" laser excites it to 6²P_{1/2}
- With 30 % chance is relaxes to the metastable 5D⁴_{3/2} with emission of a red photon (to be detected)
- About 60.000.000 "red" photons per second can be produced in saturation of the cycle BY ONE Barium ion
- EXO: Tagging of daughter nulceus would improve significance dramatically (still R&D)

COBRA - search for neutrinoless double beta decay with an array of Cd(Zn)Te semiconductor detectors

Idea

- In R&D phase
- Cd(Zn)Te semiconductor detectors (source=detector)
- Array of small crystals (1 cm³) to identify double site events and identify decays into excited states
- 9 nuclei can be used with same detector technology

		Nat. abund.	Q [keV]	Decay mode	
	Zn70	0.62	1001	ß-ß-	
	Cd114	28.7	534	ß-ß-	
	Cd116	7.5	2809	ß-ß-	Most promising
_	Te128	31.7	868	ß-ß-	
	Te130	33.8	2529	ß-ß-	
	Zn64	48.6	1096	ß+/EC	
	Cd106	1.21	2771	B+B+	
	Cd108	0.9	231	EC/EC	
	Te120	0.1	1722	B+/EC	Ele

Shielding + Faraday cup

4x4 cubes

Elektrical signal $\checkmark \propto (E_{e1} + E_{e2})$

Cube (1cm³) of Cd(Zn)Te

COBRA - search for neutrinoless double beta decay with an array of Cd(Zn)Te semiconductor detectors

Idea

- In R&D phase
- Cd(Zn)Te semiconductor detectors (source=detector)
- Array of small crystals (1 cm³) to identify double site events and identify decays into excited states
- 9 nuclei can be used with same detector technology

	Nat.	Q [keV]	Decay	
	abund.		mode	
Zn70	0.62	1001	ß-ß-	
Cd114	28.7	534	ß-ß-	
Cd116	7.5	2809	ß-ß-	Most promising
Te128	31.7	868	ß-ß-	
Te130	33.8	2529	ß-ß-	
Zn64	48.6	1096	B+/EC	
Cd106	1.21	2771	B+B+	
Cd108	0.9	231	EC/EC	
Te120	0.1	1722	B+/EC	

Shielding + Faraday cup

4x4 cubes

Cube (1cm³) of Cd(Zn)Te

From solid calorimeter to solid tracking calorimeter

Today

- Large "pixels" (1 cm³)
- Only energy measurement
- Limited particle identification

Tomorrow ?

- Small pixels (z.B. < 0.004 cm³)
- Pixels -> tracking
- Energy measurement in each pixel
- Particle identification with to track analysis

COBRA collaboration:

Technical University Dresden, Technical University Dortmund, Material Res. Centre Freiburg, University of Erlangen-Nürnberg, University of Hamburg, Laboratori Nazionali del Gran Sasso, Washington University St. Louis, Czech Technical University Prague, University of Jyvaskyla, JINR Dubna, University of Bratislava; University of La Plata

One detector candidate: The hybrid pixel detector Timepix

ASIC/Sensor:

- Development: International Collaboration with seat at CERN
- Bump-bonded with Pb/ Sn alloy
- 65536 pixels
- Pixel pitch: 55 µm
- Size of the matrix: 14 mm (approx. 2 cm²)
- 0.25 µm CMOS technology

Sensor:

- Materials: Si, GaAs, CdTe
- Bias voltage: e.g. 150 V (300 µm Si)

Drift and diffusion of released charge carriers

The Timepix-ASIC

Timepix: counting or Time-Over-Threshold or Time-To-Shutter (exclusive ORs)

The power of pixels (simulation)

- Typical track length: 1.0 3 mm
- Pixelpitch < 200 µm reasonable
- Optimization between: energy resolution, leakage in neighbouring pixels, track resolution, number of channels, power consumption

Background event: 3 MeV β

Main background source for this exp.: Electrons from beta decay of ²¹⁴Bi with 3.3 MeV endpoint energy

A decay electron from ²¹⁴Bi and the following (T_{1/2}=164 μ s) α from ²¹⁴Po decay

Example of a muon track

A 350 keV electron track

A cosmic shower in the Timepix

Simulation of signal ($0\nu\beta\beta$) and $2\nu\beta\beta$ -background (preliminary)

- Charge transport in sensor included
- 1.6 mm thick CdTe
- Pixelpitch: 110 µm
- 700 V Bias voltage
- Analog noise: 400 e- rms
- 7 keV threshold in pixels

$$\frac{\Delta E_{FWHM}}{E} = 1.3\%$$

- Optimization:
 - Thicker sensor
 - Face-To-Face
 - Threshold of 4 keV

What must experimentalists do ?

 Find a peak at the correct energy (Q-value) 	
 Find only events that have single-site energy deposition 	$ \begin{array}{c} 0\nu\beta\beta \text{ probably} \\ \text{exists} \end{array} $
Demonstrate that the measured rate scales with isotope fraction	
Observe the 2 electron tracks	
 Show that kinematic distributions like single electron energies and opening angles are like the expected ones 	
 Tag the daughter nucleus in coincidence 	> Almost convincing
 Indentify decays into the excited states (lower Q) and prove that decay rates fit to decay to ground state data 	
 See most of this in several nulcei 	- Then it's for sure

Thank you very much for your attention !