Interactions

Prof. Dr. Martin Erdmann RWTH Aachen University 7-Oct-2010

Fundamental Interactions

Total Cross Section

Measurement: Total Cross Section

Mean Free Path Length

Beam particles not scattered:

$$\dot{N}_{u}' = \dot{N} F (1 - n \Delta x \sigma)$$

Number of unscattered particles as function of target thickness:

Cross Section Strong Interactions

Erdmann, RWTH Aachen University

Cross Section Electromagnetic Interactions

Cross Section Weak Interactions

Muon Neutrino and Anti-Neutrino Charged-Current Total Cross Section

Erdmann, RWTH Aachen University

Differential Cross Section

Erdmann, RWTH Aachen University

Electroweak Unification

at small distances: cross sections become equally large

LHC & Cosmic Ray Energies

Total Cross Section Contributions

CMS: Diffractive Scattering

Large Rapidity Gap (LRG)

→ THE PEAK at 0 is from Diffractive events !

LHC-F: Forward Detector

as)

Invariant mass [MeV]

Summary

Cross section measurements and comparisons to cross section calculations are a unique way of obtaining microscopic information on structures and interactions.