Reconstruction of coincident SD/RD Events at the Pierre Auger Observatory using the OffLine-Framework

Jens Neuser (BU Wuppertal)

School for Astroparticlephysics Obertrubach, 13. October 2010

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

neuser@physik.uni-wuppertal.de

Outlook & Summary

Outlook & Summary

2 An improved SD-Reconstruction

Outlook & Summary

- 2 An improved SD-Reconstruction
- **3** Analysis of self-triggered radio data

Outlook & Summary

Motivation

- **2** An improved SD-Reconstruction
- **3** Analysis of self-triggered radio data
- Outlook & Summary

Motivation	
● 0 000000	

The Pierre Auger Observatory (PAO)

- Pierre Auger (1938): Existence of extensive air showers (EAS)
- PAO is largest surface detector experiment worldwide with an array of approximately 3000 km^2
- Sited near the city of Malargue, Mendoza, Argentina

Motivation	
0000000	
PAO	

Surface- & Fluorescence Detectors

- PAO build as Hybrid-Detector
- 1600 Water-Cherenkov-Tanks (SD)
- 4x6 Fluorescence-Telescopes (FD)
- Extensions:
 - AMIGA : Auger Mouns and Infill for the Ground Array
 - HEAT : High Elevation Auger Telescopes

Motivation	
AFRA	

Auger Engineering Radio Array

- 161 autonomous radio detector stations
- 3 stages of deployment (144m, 250m, 433m spacing)
- sited near Coihueco / HEAT and in the infill array

Motivation ○○○●○○○○	
AERA	

Antenna & electronics

- Logarithmic Periodic Dipole Antenna : 'Small Black Spider'
- Low Noise Amplifier
- FPGA-based front-end electronics (digitizer)

Motivation ○○○○●○○○	
AERA	

Outlook & Summary

From EAS to ASCII

- \bullet More information on electronics / trigger \rightarrow Talk: C. Ruehle
- ASCII files from DAQ are fed into OffLine for further analysis

Motivation ○○○○●○○	
AERA	

The Offline-Framework

- Software-Framework for analysis purposes
- Completly modularized for highly flexible applications
- Clear separation between event and detector structure

Motivation ○○○○●○○	
AERA	

Outlook & Summary

The Offline-Framework

• Structure of the OffLine-Event class

Motivation ○○○○○●○	
AERA	

Outlook & Summary

Typical module sequence

Motivation	
0000000	

AERA

What we have (and what not) ...

- Three test setups in AERA Phase 1:
 - MAXIMA @ BLS
 - STAR @ BLS
 - RAuger @ CLF
- MAXIMA data from 2007/2008:
 - Daily check for events with additional SD-Tank 'Olaia'
 - $\bullet\,$ Check for coincidences in $\approx\,100~\mu{\rm s}$ window
 - Found 494 'coincident' events
- 'Problem': Only done with normal Auger reconstruction
- \rightarrow Need for a corresponding SD-Reconstruction in OffLine for further RD analysis

An improved SD-Reconstruction

Outlook & Summary

SDEventSelector

- Initial point: Tank 'Olaia' not included in standard OffLine-Reconstruction
- Incorporate extensions from Infill-Reconstruction
- Add code for selecting events by list of requested stations

	An improved SD-Reconstruction ●○○	
SD/SD*		

- Run Observer-Reconstruction for CoinData time period
- apply some (Non)-'Quality' cuts
- Standard reconstructions yields 148 of 494 events
- Olaia reconstruction yields 476 of 494 events

 \rightarrow Only 31 % of the total events reconstructed without Olaia

• missing 18 events identified as shower, but not reconstructable due to alignment of hit tanks

CoinData494

	An improved SD-Reconstruction ●○○	
SD/SD*		

• Angular distribution (ϕ (top) and θ (bottom))

	An improved SD-Reconstruction	
SD/SD*		

	An improved SD-Reconstruction ●○○	
SD/SD*		

 \bullet Angular resolution $<2^\circ$

	An improved SD-Reconstruction ●○○	
SD/SD*		

• Angular efficiency for radial distance and energy

	An improved SD-Reconstruction ○●○	
SD/SD*		

• Angular distribution (ϕ (top) and θ (bottom))

	An improved SD-Reconstruction ○●○	
SD/SD*		

	ion An im ⊃oo o●o	proved SD-Reconstruction	
SD/SD ³			

• Angular resolution $<2^\circ$

	An improved SD-Reconstruction ○●○	
SD/SD*		

• Angular efficiency for radial distance and energy

	An improved SD-Reconstruction ○●○	
SD/SD*		

• Cross-check: Efficiency \approx Auger acceptance

	An improved SD-Reconstruction ○○●		
SD*/RD			
		Co	inData494

- Compare SD*-reconstruction with RD-reconstruction for available parameters
- Core Position for SD, $RD(SNR^2 = 16)$ and $RD(SNR^2 = 25)$

	An improved SD-Reconstruction ○○●		
SD*/RD			
		Co	inData494

- $\bullet\,$ Angular resolution $\approx 10^\circ\,$
- Sounds huge, but remember 150m baseline of antenna layout
- No big change with increasing SNR

	An improved SD-Reconstruction ○○●	
SD*/RD		

• Angular efficiency for radial distance and energy

	Analysis of self-triggered radio data	
		STAR data

- Even more important is analysis of the newer radio data
 - Search for coincidences between STAR and SD*
 - Check for GPS-time differences
 - Noise studies
 - Favoured arrival directions
 - influence of different SNR

	Analysis of self-triggered radio data ●○	
STAR raw data		

STAR raw data

$\bullet\,$ Difference to next trigger for SD/RD and RD/RD

 No clue for time offset between SD and RD due to many RD events for one SD event

J. Neuser (BUW)

SD/RD reconstruction

	Analysis of self-triggered radio data ●○	
STAR raw data		

STAR raw data

- ullet Difference to next trigger for RD/RD for $\Delta t < 1s$
- Exponential drop-off, sin-structure on top?!

	Analysis of self-triggered radio data ●○	
STAR raw data		

STAR raw data

- ullet Difference to next trigger for RD/RD for $\Delta t < 0.1 s$
- 50 Hz power line clearly visible

STAR raw data	

Outlook & Summary

STAR raw data

• t mod 50 Hz (Phase ?)

• unfortunately no sign for (time-dependent) phase

J. Neuser (BUW)

Motivation

STAR reconstructed data

An improved SD-Reconstruction

Analysis of self-triggered radio data

Outlook & Summary

STAR reconstructed data

$\bullet\,$ Difference to next trigger for SD/RD and RD/RD

Motivation

STAR reconstructed data

An improved SD-Reconstruction

Analysis of self-triggered radio data

Outlook & Summary

STAR reconstructed data

• Difference to next trigger for RD/RD for $\Delta t < 1s$

STAR reconstructed data

Analysis of self-triggered radio data

Outlook & Summary

STAR reconstructed data

- Difference to next trigger for RD/RD for $\Delta t < 0.1s$
- Are there still power line events? \rightarrow ongoing!

		Outlook & Summar ●○○
Outlook		

Pull the trigger..!

- AERA will run in self-trigger mode
- 'Framework' almost clear, but parameters not fixed yet
- need larger 'database' of real pulses for further pulse shape analysis
- try to filter out the possible coincident events for additional hints on trigger parametrization

• influence of SNR? azimuthal arrival direction?

	An improved SD-Reconstruction	Outlook & Summary ○●○
Summary		
		Summary

- AERA is in build-up phase and will deliver first data soon
- RD-Offline is ready for this
- Final goal will be a RD/SD(/FD) Hybrid-Reconstruction
- SD-Reconstruction has been adapted to include Olaia
- Without Olaia only 35% of the coincident events reconstructed
- \bullet Angular residuals $<2^{\circ} \rightarrow$ no change in accuracy, but in statistics
- Coincidence search in STAR data ongoing
- Exclusion of e.g. power line events not as easy as 'hoped'
- further investigations of parameters (SNR, angles, ...)

Summary	

Outlook & Summary ○○●

THANKS!