The MAGIC origin of galactic Cosmic Rays

Julian Krause

Max-Planck-Intsitut fuer Physik

October 8th 2010

Julian Krause (MPP)

Intro Session

October 8th 2010 1 / 16

Outline

Myself

2 The big picture

- Cosmic Rays
- Supernova remnants
- VHE-γ's
- 3 Very high energy γ-Astronomy
 Imaging Air Cherenkov Technique
 MAGIC

A .

Julian Krause

Myself

- University study
 - Diploma in physiscs at the University of Bonn (Germany)
 - Topic of Diploma thesis: Galactic Cosmic Rays in spiral arms

PhD 2009-2012(?!)

- Max Planck Institut for physics in Munich (Germany)
- Member of the MAGIC Collaboration

Julian Krause

Myself

- University study
 - Diploma in physiscs at the University of Bonn (Germany)
 - Topic of Diploma thesis: Galactic Cosmic Rays in spiral arms

PhD 2009-2012(?!)

- Max Planck Institut for physics in Munich (Germany)
- Member of the MAGIC Collaboration

My PhD

Galactic cosmic rays (GCR) and supernova remnants (SNR's)

- Observations of VHE- γ emission from SNR's
- Acceleration models of GCR in SNR's
- combine theory and experiment

Cosmic Ray accelerators

Requirements on galactic CR sources

- provide enough energy
- reproduce observed power-law spectrum
- accelerate CR up to the knee

Supernova remnants

Properties of SNR

- kinetic energy $\approx 10^{51}$ erg (5-20% needed for CR)
- $\bullet\,$ diffusive shock acceleration $\rightarrow\,$ power-law spectrum
- $\bullet\,$ self amplified magnetic fields $\rightarrow\,$ energies up to the knee

Current status of the origin of GCR

History

- Cosmic Rays detected: 1912 (Hess)
- Acceleration mechanism: 1946 (Fermi)
- SNR's claimed as sources of GCR: 1977-78 (Axford, Krymskii, Blandford & Ostriker, Bell)

Current status of the origin of GCR

History

- Cosmic Rays detected: 1912 (Hess)
- Acceleration mechanism: 1946 (Fermi)
- SNR's claimed as sources of GCR: 1977-78 (Axford, Krymskii, Blandford & Ostriker, Bell)

Today

A lot of reasonable and clear hints from both theory and experiments

No proof!

Current status of the origin of GCR

History

- Cosmic Rays detected: 1912 (Hess)
- Acceleration mechanism: 1946 (Fermi)
- SNR's claimed as sources of GCR: 1977-78 (Axford, Krymskii, Blandford & Ostriker, Bell)

Today

A lot of reasonable and clear hints from both theory and experiments

No proof!

Tomorrow?!

A 100 years old question waits to be answered

l believe

	Julian	Krause ((MPP)
--	--------	----------	-------

From SNR's as CR sources to VHE- γ -rays

Search for CR sources

- Problem
 - CR's are charged
 - non homgeneous intestellar B-fields
 - isotropic distribution of CR's spectrum at Earth
- Solution
 - γ -rays
 - convert CR into γ 's
 - γ 's point back to interaction point

From SNR's as CR sources to VHE- γ -rays

Search for CR sources

- Problem
 - CR's are charged
 - non homgeneous intestellar B-fields
 - isotropic distribution of CR's spectrum at Earth
- Solution
 - γ -rays
 - convert CR into γ 's
 - γ 's point back to interaction point

Leptonic Channel

- Bremsstrahlung
 matter
- Synchroton
 magnetic fields
- Inverse Compton
 photon fields

- **A**

From SNR's as CR sources to VHE- γ -rays

Search for CR sources

- Problem
 - CR's are charged
 - non homgeneous intestellar B-fields
 - isotropic distribution of CR's spectrum at Earth
- Solution
 - γ -rays
 - convert CR into γ 's
 - γ 's point back to interaction point

Leptonic Channel

- Bremsstrahlung
 matter
- Synchroton
 magnetic fields
- Inverse Compton
 photon fields

Hadronic Channel

- π⁰-decay
 - matter

Very high energy γ -Astronomy

- Young field of Astronomy
- Energy range GeV-TeV (wavlength $\leq 10^{-8} nm$)
- First source: Crab Nebula 1989 at the Whipple Observatory

4 3 > 4 3

Very high energy γ -Astronomy

- Young field of Astronomy
- Energy range GeV-TeV (wavlength $\leq 10^{-8} nm$)
- First source: Crab Nebula 1989 at the Whipple Observatory

General comments

- No object in the universe is hot enough to radiate GeV photons
- Interaction of high energy particels needed
- Most violent objects are typical sources
 - Supernova remnants
 - Pulsars
 - Pulsar wind nebulae
 - Binaries with a compact object
 - Active galactic nuclei

4 3 5 4 3

Imaging Air Cherenkov Technique

イロト イヨト イヨト イヨト

Julian Krause (MPP)

э

The MAGIC Telescopes Major Atmospheric Gamma Imaging Cherenkov Telescopes

- Location: Canary Island La Palma 2200m altitude
- 17m diameter
- 60t weight
- Treshold:
 50 GeV

Mono Observations

PRO

- cheaper!
- symmetry in Azimuth

CONTRA

- difficult to reject background
- no precise 3d information

Julian Krause (MPP)

Intro Session

October 8th 2010 11 / 16

Stereo Observations

PRO

- Good 3d information
- better background rejection

CONTRA

- no symmetry in Azimuth
- more Systems

Julian Krause (MPP)

Intro Session

October 8th 2010 12 / 16

Classical astronomy vs. VHE- γ -astronomy

Julian	Krause ((MPP)

イロト イヨト イヨト イヨト

Classical astronomy vs. VHE- γ -astronomy

Julian Krause (MPP)
-----------------	-----	---

< 17 ▶

Crab Nebula Spectrum MAGIC Stereo

November 13-15th 2009, 190min effective observation time

The perfect source(s)

To detect the hadronic channel look for purely hadronic sources

The perfect source(s)

To detect the hadronic channel look for purely hadronic sources

high magnetic fields

hadronic CR amplify B-fields leptonic synchroton losses \rightarrow high energy γ 's hadronic

- SNR requierements
 very young (≈ 1kyr)
- disadvantages
 - very few objects
 - (≈15-50)
 - may lack target material

The perfect source(s)

To detect the hadronic channel look for purely hadronic sources

high magnetic fields

hadronic CR amplify B-fields leptonic synchroton losses \rightarrow high energy γ 's hadronic

- SNR requierements
 very young (≈ 1kyr)
- disadvantages
 - very few objects
 - (≈15-50)
 - may lack target material

dense targets

molecular clouds leptons \rightarrow Bremsstrahlung hadrons π^0 -decay

- SNR requierements
 very close cloud ≈ pc
- disadvantages
 - few objects (\approx 200)
 - leptonic γ 's

4 3 5 4 3

Conclusion & Outlook

Conclusion

- Origin of GCR still unresolved
- SNR's are still the best candidates
- Imaging Air Cherenkov Technique is working fine
- VHE- γ -astronomy is usefull tool to find CR sources
- Separating leptonic and hardronic channel is very challenging

4 3 5 4 3

Conclusion & Outlook

Conclusion

- Origin of GCR still unresolved
- SNR's are still the best candidates
- Imaging Air Cherenkov Technique is working fine
- VHE-γ-astronomy is usefull tool to find CR sources
- Separating leptonic and hardronic channel is very challenging

Outlook

- Select ideal source candidates
- Perform deep VHE-γ observations
- Use Multiwavelength data
- Test recent acceleration models
- Put more constraints on cosmic hadronic accelators