Lepton track reconstruction

Dominikus Hellgartner

Technische Universität München

Astroteilchenschule 6th- 14th October 2010

Contents

LENA

Detector layout Physics potential

Lepton track reconstruction in the GeV range

Event signature General assumptions for track reconstruction Estimation of start parameters Charge based energy fit First-hit-time based track fit

Conclusion

Detector Layout

- Cylindrical detector (h = 100m, r = 15m)
- Outer two meters contain non/only weakly scintillating buffer
- Inner part filled with liquid scintillator ~50 kt (LAB or PXE with dodecane as solvent, PPO as primary fluor)
- ~30% photocoverage
 - ⇒ 13 500 Super-K type PMTs
 - \Rightarrow 45 000 8"-PMTs with Winston cones
- Surrounded by 2m water as shielding and muon veto, additional muon veto scintillator panels on top
- Overburden > 4000mwe
- Preferred sites:
 - Pyhäsalmi, Finland
 - Frejus, France

Physics potential

Low-energy neutrino physics

- Solar neutrinos at high statistics (~ 4500 ⁷Be $-\nu$ d⁻¹)
- Supernova neutrinos (~10000 events)
- Diffuse supernova neutrino background
- Geoneutrinos (~ 1000 ν a⁻¹)

Neutrino physics at GeV scale

- Search for proton decay
- Atmospheric neutrinos
- Neutrino beams
 - Superbeam
 - β-beam
- \Rightarrow Reconstruction of events in GeV range required

Event signature

General considerations for track reconstruction

- Assumptions:
 - Range straggling and multiple scattering neglectable
 - muons decay at rest
- \Rightarrow Lepton propagation can be described using the CSDA
 - 7 fit parameters :
 - Kinetic energy \rightarrow 1 parameter
 - Coordinates of track start point \rightarrow 3 parameters
 - Direction of the track \rightarrow 2 parameters
 - Start time of event \rightarrow 1 parameter
 - Fit parameters energy and track start position highly correlated
 - \Rightarrow Determine energy and track-position in different fits

Estimation of start parameters

- 1 Charge based barycenter fit
- 2 Electron-muon-discrimination (decay electron)
- 3 Energy $E = q_{tot} \cdot a \cdot f(r_{bary})$
- 4 Distinguish between vertical-like and horizontal-like events
 - Vertical like events:

Get start point via fit to first-hit-times in ring with first hit

- Horizontal like events: Get start point via first tof-corrected hits
- \Rightarrow Start values for fit parameters

Charge based energy fit

- ► Comparison: Predicted charge ↔ Obtained charge signal
- PDF given by Poisson distribution
- Calculation includes:
 - Track parameters $\rightarrow \frac{dL}{dx}$ -profile (quenching included)
 - Solid angle
 - Scattering and absorption
- Energy via log-likelyhood fit to full event

First-hit-time based track fit

- ► Comparison: Predicted first hit ↔ Obtained first hit
- PDF calculation includes:
 - Track parameters $\rightarrow \frac{dL}{dx}$ -profile (quenching included)
 - Solid angle and time jitter of PMT
 - Decay time spectum of scintillator
 - Delay induced by scattering (reemission time included)

Results

Conclusion

Track reconstruction at the 1 GeV scale

- Electron-muon discrimination possible via observation of the muon's decay electron
- Energy reconstruction by a global fit to the collected PMTs' charges
- Track reconstruction by a global fit to the arrival times of the first photons
- Similar methods can be applied for reconstruction of electron and muon tracks

Next steps

- Look at real ν-interactions
- Look at π^{\pm} background for ν_{μ} appearance
- Determine physics potential using a "realistic" β -beam

Appendix - Title

Appendix

Track fit results for electrons

z [cm]

PDF for the charge based energy fit

Basic PDF

 Use Poisson distribution to describe probability of a PMT being hit by n photons

$$\Rightarrow P_{\lambda}^{PMT}(n) = rac{\lambda^n}{n!} \exp(-\lambda)$$

• λ : expected number of photons on the PMT ($\in \mathbb{R}$)

Calculate λ for each PMT

$$\lambda = \int_{\vec{x}_s}^{\vec{x}_e} ds \; \frac{\Omega(s)}{4\pi} \cdot \exp(-\frac{|\vec{r}_{PMT} - \vec{s}|}{\lambda_{tot}}) \cdot \left(\frac{dL}{dx}(\vec{s})\right) \cdot \frac{1}{R(\vec{s})}$$
with
$$\lambda_{0}(s) = \frac{A_{PMT}}{|\vec{r}_{PMT} - \vec{s}|^3} (\vec{p} - \vec{r}_{PMT}) \cdot \hat{n}_{PMT}$$

$$\frac{1}{\lambda_{tot}} = \frac{1}{\lambda_{abs}} + \frac{1}{\lambda_{ray}} + \frac{1}{\lambda_{iso}}$$

$$\text{Direct ratio } R(\vec{s})$$

$$\text{Number of photons per unit path length } \frac{dL}{dx}(\vec{s})$$

The hit time PDF for a point like PMT without scattering

$$\mathsf{P}_{\gamma,\text{dir},\text{point}}^{\text{PMT}}(t) = \frac{1}{\lambda_{\text{dir}}^{\text{PMT}}} \int_{\vec{x}_s}^{\vec{x}_\theta} ds \frac{\Omega(s)}{4\pi} \cdot \exp(-\frac{|\vec{r}_{\text{PMT}} - \vec{s}|}{\lambda_{\text{tot}}}) \cdot \frac{dL}{dx}(\vec{s}) \cdot \\ \left\{ \left[\Theta(t - t_{sh}(\vec{s})) \sum_{i}^{N} \frac{f_i}{\tau_i} \exp(-\frac{t - t_{sh}(s)}{\tau_i}) \right] * \text{Res}_{\text{PMT}}(t) \right\}(t)$$

with:

$$t_{sh} = \frac{1}{c_L} |\vec{r}_{PMT} - \vec{s}| + \Delta t_\mu(\vec{x}_s, \vec{s}) + t_o$$

- *τ_i* : Scintillator decay constants
- *f_i*: Weights of each decay mode
- $Res_{PMT}(t)$: PMT time resolution function (gaussian with $\sigma = 1$ ns)

PDF for an extended PMT without scattering

$$P_{\gamma,dir}^{PMT}(t) = \frac{1}{\gamma_{dir}^{PMT}} \int_{\vec{x}_{s}}^{\vec{x}_{e}} ds \int_{\partial PMT} dA \frac{\frac{d\Omega}{dA}(\vec{r}_{A},\vec{s})}{4\pi} \cdot \exp(-\frac{|\vec{r}_{A}-\vec{s}|}{\lambda_{tot}}) \cdot \frac{dL}{dx}(\vec{s}) \cdot \\ \cdot \left\{ \left[\Theta(t - t_{sh}(\vec{s},\vec{r}_{A})) \sum_{i}^{N} \frac{f_{i}}{\tau_{i}} \exp(-\frac{t - t_{sh}(s,\vec{r}_{A})}{\tau_{i}}) \right] * Res_{PMT}(t) \right\} (t)$$

Approximation:

$$\begin{array}{l} \bullet \quad \vec{r}_{A} = \vec{r}_{PMT,0} + \vec{r}' \\ \Rightarrow \quad |\vec{r}_{A} - \vec{s}| \approx |\vec{r}_{PMT,0} - \vec{s}| + \frac{(\vec{r}_{PMT,0} - \vec{s})}{|\vec{r}_{PMT,0} - \vec{s}|} \cdot \frac{\vec{r}'}{|\vec{r}'|} |\vec{r}'| \\ \Rightarrow \quad P_{\gamma,dir}^{PMT}(t) = \frac{1}{\lambda_{dir}^{PMT}} \int_{\vec{x}_{s}}^{\vec{x}_{e}} ds \frac{\Omega(s, \vec{r}_{PMT,0})}{4\pi} \cdot \exp(-\frac{|\vec{r}_{PMT,0} - \vec{s}|}{\lambda_{tot}}) \cdot \frac{dL}{dx}(\vec{s}) \cdot \\ \cdot \frac{1}{A} \int_{\partial PMT} \int_{\partial PMT}^{\vec{d}A} \left\{ \left[\Theta(t - t_{sh}(\vec{s}, \vec{r}_{A},)) \sum_{i}^{N} \frac{f_{i}}{\tau_{i}} \exp(-\frac{t - t_{sh}(s, \vec{r}_{A})}{\tau_{i}}) \right] * Res_{PMT}(t) \right\} \\ = \frac{1}{\lambda_{dir}^{PMT}} \int_{\vec{x}_{s}}^{\vec{x}_{e}} ds \ g(\vec{s}) \cdot F(t - t_{sh}(\vec{s}, \vec{r}_{0, PMT}), \angle(\vec{s} - \vec{r}_{PMT,0}, \hat{n}_{PMT})) \end{array}$$

PDF for an extended PMT with scattering Basic approach

$$P_{\gamma}^{PMT}(t) = \frac{1}{\lambda} \int_{\vec{x}_{s}}^{\vec{x}_{e}} ds \frac{g(\vec{s})}{R(\vec{s})} [R(\vec{s})F(t-t_{sh},\xi) + (1-R(\vec{s}))G(t-t_{sh},\vec{s})]$$
$$= \frac{1}{\lambda} \int_{\vec{x}_{s}}^{\vec{x}_{e}} ds \frac{g(\vec{s})}{R(\vec{s})}B(t-t_{sh}(\vec{s}),\rho,|\Delta\phi|,|\Delta z|)$$

with $\xi = \angle (\vec{s} - \vec{r}_{PMT,0}, \hat{n}_{PMT})$

Calculation of time distribution of scattered photons G

• Approximation: $G(t - t_{sh}(\vec{s}), \xi, \rho, |\Delta \Phi|, |\Delta z|) \approx G(t - t_{sh}(\vec{s}), |\vec{r}_{PMT,0} - \vec{s}|)$ • $G(t - t_{sh}(\vec{s}), |\vec{r}_{PMT,0} - \vec{s}|) \approx [F(t', 1) * P_{scat}(t')](t)$

1

PDF for first hits

$$\blacktriangleright P_{1^{st_{\gamma}}}^{PMT}(t) = P_{\gamma}^{PMT}(t) \left[1 - \int_{-\infty}^{t} dt' P_{\gamma}^{PMT}(t') \right]^{(n_{\gamma}-1)} \cdot n_{\gamma}$$

Eventdisplay with upward going neutrinos

Borexino electronics

Borexino electronics

